ﻻ يوجد ملخص باللغة العربية
Central limit theorems for the log-volume of a class of random convex bodies in $mathbb{R}^n$ are obtained in the high-dimensional regime, that is, as $ntoinfty$. In particular, the case of random simplices pinned at the origin and simplices where all vertices are generated at random is investigated. The coordinates of the generating vectors are assumed to be independent and identically distributed with subexponential tails. In addition, asymptotic normality is established also for random convex bodies (including random simplices pinned at the origin) when the spanning vectors are distributed according to a radially symmetric probability measure on the $n$-dimensional $ell_p$-ball. In particular, this includes the cone and the uniform probability measure.
Let $K$ be a convex body in $mathbb{R}^n$ and $f : partial K rightarrow mathbb{R}_+$ a continuous, strictly positive function with $intlimits_{partial K} f(x) d mu_{partial K}(x) = 1$. We give an upper bound for the approximation of $K$ in the symmet
The deviation of a general convex body with twice differentiable boundary and an arbitrarily positioned polytope with a given number of vertices is studied. The paper considers the case where the deviation is measured in terms of the surface areas of
We prove that there exists an absolute constant $alpha >1$ with the following property: if $K$ is a convex body in ${mathbb R}^n$ whose center of mass is at the origin, then a random subset $Xsubset K$ of cardinality ${rm card}(X)=lceilalpha nrceil $
Let $r=r(n)$ be a sequence of integers such that $rleq n$ and let $X_1,ldots,X_{r+1}$ be independent random points distributed according to the Gaussian, the Beta or the spherical distribution on $mathbb{R}^n$. Limit theorems for the log-volume and t
Let $K$ be an isotropic symmetric convex body in ${mathbb R}^n$. We show that a subspace $Fin G_{n,n-k}$ of codimension $k=gamma n$, where $gammain (1/sqrt{n},1)$, satisfies $$Kcap Fsubseteq frac{c}{gamma }sqrt{n}L_K (B_2^ncap F)$$ with probability g