ترغب بنشر مسار تعليمي؟ اضغط هنا

A holographic superconductor forced through interactions

52   0   0.0 ( 0 )
 نشر من قبل Sayan Kumar Das
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel mechanism to achieve superconductivity at zero chemical potential, within the holographic framework. Extending previous construction of the holographic superconductors, we consider an Einstein-Maxwell system coupled with two interacting scalars in Anti-de Sitter space. One of the scalar fields is charged and therefore, interacts non-trivially with the gauge field, while the other is uncharged. We find that, if we turn on a boundary source for the uncharged scalar field, it forces the condensation of the charged scalar, leading to a superconducting phase in the dual boundary theory. The condensation occurs at a certain critical value of the source, depending on the value of the chemical potential, which can even be zero. We work out the complete phase diagram of this scenario. We further corroborate the existence of superconductivity at zero chemical potential, through a fluctuation analysis on our solution. Notably, the conductivity of the system, as a function of probing frequency, exhibits characteristics of usual holographic superconductors. We also investigate how these properties of the system changes, as we vary the interaction strength between the scalar fields. Our results indicate a controlled mechanism to manipulate the phase transition temperature of superconductors with strongly coupled microscopics.



قيم البحث

اقرأ أيضاً

We demonstrate that combining standing-wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW- RIXS has been applied to multilayer heterostructures consisting of a superconductor La$_{1.85}$Sr$_{0.15}$CuO$_{4}$(LSCO) and a half-metallic ferromagnet La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects.
202 - G. Rosenberg 2009
We describe and analyze in detail our recent theoretical proposal for the realization and manipulation of anyons in a weakly interacting system consisting of a two-dimensional electron gas in the integer quantum Hall regime adjacent to a type-II supe rconducting film with an artificial array of pinning sites. The anyon is realized in response to a defect in the pinned vortex lattice and carries a charge pm e/2 and a statistical angle pi/4. We establish this result, both analytically and numerically, in three complementary approaches: (i) a continuum model of two-dimensional electrons in the vortex lattice of the superconducting film; (ii) a minimal tight-binding lattice model that captures the essential features of the system; and (iii) an effective theory of the superconducting vortex lattice superposed on the integer quantum Hall state. We propose a novel method to measure the fractional charge directly in a bulk transport experiment and an all-electric setup for an ``anyon shuttle implementing the braiding operations. We briefly discuss conditions for fabricating the system in the lab and its potential applications in quantum information processing with non-Abelian anyons.
We present an infinite class of 2+1 dimensional field theories which, after coupling to semi-holographic fermions, exhibit strange metallic behavior in a suitable large $N$ limit. These theories describe lattices of hypermultiplet defects interacting with parity-preserving supersymmetric Chern-Simons theories with $U(N) times U(N)$ gauge groups at levels $pm k$. They have dual gravitational descriptions in terms of lattices of probe M2 branes in $AdS_4 times S^7/Z_k$ (for $N gg 1, N gg k^5$) or probe D2 branes in $AdS_4 times CP^3$ (for $N gg k gg 1, N ll k^5$). We discuss several challenges one faces in maintaining the success of these models at finite $N$, including backreaction of the probes in the gravity solutions and radiative corrections in the weakly coupled field theory limit.
We consider a holographic superconductor with homogeneous impurities added. We start with the holographic Abelian-Higgs model for s-wave superconductivity, and turn on a coupling between the gauge field and a new massive gauge field that is introduce d for impurities, whose effect is examined in the probe limit. We find that the condensation of the massive gauge field is induced in the superconducting phase. When the coupling is sufficiently large, the mass gap in the optical conductivity disappears. A resonance peak is found in the conductivity for the massive vector field.
We use holography to compute the conductivity in an inhomogeneous charged scalar background. We work in the probe limit of the four-dimensional Einstein-Maxwell theory coupled to a charged scalar. The background has zero charge density and is constru cted by turning on a scalar source deformation with a striped profile. We solve for fluctuations by making use of a Fourier series expansion. This approach turns out to be useful for understanding which couplings become important in our inhomogeneous background. At zero temperature, the conductivity is computed analytically in a small amplitude expansion. At finite temperature, it is computed numerically by truncating the Fourier series to a relevant set of modes. In the real part of the conductivity along the direction of the stripe, we find a Drude-like peak and a delta function with a negative weight. These features are understood from the point of view of spectral weight transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا