ﻻ يوجد ملخص باللغة العربية
We develop a general formalism for multiple moduli and their associated modular symmetries. We apply this formalism to an example based on three moduli with finite modular symmetries $S_4^A$, $S_4^B$ and $S_4^C$, associated with two right-handed neutrinos and the charged lepton sector, respectively. The symmetry is broken by two bi-triplet scalars to the diagonal $S_4$ subgroup. The low energy effective theory involves the three independent moduli fields $tau_A$, $tau_B$ and $tau_C$, which preserve the residual modular subgroups $Z_3^A$, $Z_2^B$ and $Z_3^C$, in their respective sectors, leading to trimaximal TM$_1$ lepton mixing, consistent with current data, without flavons.
The idea of modular invariance provides a novel explanation of flavour mixing. Within the context of finite modular symmetries $Gamma_N$ and for a given element $gamma in Gamma_N$, we present an algorithm for finding stabilisers (specific values for
Sum rules in the lepton sector provide an extremely valuable tool to classify flavour models in terms of relations between neutrino masses and mixing parameters testable in a plethora of experiments. In this manuscript we identify new leptonic sum ru
We analyse how $U(3)^5$ and $U(2)^5$ flavour symmetries act on the Standard Model Effective Field Theory, providing an organising principle to classify the large number of dimension-six operators involving fermion fields. A detailed counting of such
I propose the use of CP-odd invariants, which are independent of basis and valid for any choice of CP transformation, as a powerful approach to study CP in the presence of flavour symmetries. As examples of the approach I focus on Lagrangians invaria
Modular flavor symmetries provide us with a new, promising approach to the flavor problem. However, in their original formulation the kinetic terms of the standard model fields do not have a preferred form, thus introducing additional parameters, whi