ﻻ يوجد ملخص باللغة العربية
Recent experiments have demonstrated that small-scale rotary devices installed in a microfluidic channel can be driven passively by the underlying flow alone without resorting to conventionally applied magnetic or electric fields. In this work, we conduct a theoretical and numerical study on such a flow-driven watermill at low Reynolds number, focusing on its hydrodynamic features. We model the watermill by a collection of equally-spaced rigid rods. Based on the classical resistive force (RF) theory and direct numerical simulations, we compute the watermills instantaneous rotational velocity as a function of its rod number $N$, position and orientation. When $N geq 4$, the RF theory predicts that the watermills rotational velocity is independent of $N$ and its orientation, implying the full rotational symmetry (of infinity order), even though the geometrical configuration exhibits a lower-fold rotational symmetry; the numerical solutions including hydrodynamic interactions show a weak dependence on $N$ and the orientation. In addition, we adopt a dynamical system approach to identify the equilibrium positions of the watermill and analyse their stability. We further compare the theoretically and numerically derived rotational velocities, which agree with each other in general, while considerable discrepancy arises in certain configurations owing to the hydrodynamic interactions neglected by the RF theory. We confirm this conclusion by employing the RF-based asymptotic framework incorporating hydrodynamic interactions for a simpler watermill consisting of two or three rods and we show that accounting for hydrodynamic interactions can significantly enhance the accuracy of the theoretical predictions.
In this fluid dynamics video, we present various aspects of copepod behavior at low Re.
It has been known for some time that some microorganisms can swim faster in high-viscosity gel-forming polymer solutions. These gel-like media come to mimic highly viscous heterogeneous environment that these microorganisms encounter in-vivo. The qua
A new approach to turbulence simulation, based on a combination of large-eddy simulation (LES) for the whole flow and an array of non-space-filling quasi-direct numerical simulations (QDNS), which sample the response of near-wall turbulence to large-
We design and simulate the motion of a new swimmer, the {it Quadroar}, with three dimensional translation and reorientation capabilities in low Reynolds number conditions. The Quadroar is composed of an $texttt{I}$-shaped frame whose body link is a s
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor