ﻻ يوجد ملخص باللغة العربية
A two-dimensional topological insulator (2DTI) has an insulating bulk and helical spin-polarised edge modes robust to backscattering by non-magnetic disorder. While ballistic transport has been demonstrated in 2DTIs over short distances, larger samples show significant backscattering and a nearly temperature-independent resistance whose origin is unclear. 2DTI edges have shown a spin polarisation, however the degree of helicity is difficult to quantify from spin measurements. Here, we study 2DTI few-layer Na3Bi on insulating Al2O3. A non-local conductance measurement geometry enables sensitive detection of the edge conductance in the topological regime, with an edge mean free path ~100 nm. Magnetic field suppresses spin-flip scattering in the helical edges, resulting in a giant negative magnetoresistance (GNMR), up to 80% at 0.9 T. Comparison to theory indicates >98% of scattering is helical spin scattering significantly exceeding the maximum (67%) expected for a non-helical metal. GNMR, coupled with non-local measurements demonstrating edge conduction, thus provides an unambiguous experimental signature of helical edges that we expect to be generically useful in understanding 2DTIs.
Na3Bi has attracted significant interest in both bulk form as a three-dimensional topological Dirac semimetal and in ultra-thin form as a wide-bandgap two-dimensional topological insulator. Its extreme air sensitivity has limited experimental efforts
We propose a minimal effective two-dimensional Hamiltonian for HgTe/CdHgTe quantum wells (QWs) describing the side maxima of the first valence subband. By using the Hamiltonian, we explore the picture of helical edge states in tensile and compressive
The magnetic behavior of truncated conical nanoparticles in patterned thin films is investigated as a function of their size and shape. Using a scaling technique, phase diagrams giving the relative stability of characteristic internal magnetic struct
The solutions for the helical edge states for an effective continuum model for the quantum spin Hall effect in HgTe/CdTe quantum wells are presented. For a sample of a large size, the solution gives the linear dispersion for the edge states. However,
Large area van der Waals (vdW) thin films are assembled materials consisting of a network of randomly stacked nanosheets. The multi-scale structure and the two-dimensional nature of the building block mean that interfaces naturally play a crucial rol