ترغب بنشر مسار تعليمي؟ اضغط هنا

Fashion Editing with Adversarial Parsing Learning

174   0   0.0 ( 0 )
 نشر من قبل Haoye Dong
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Interactive fashion image manipulation, which enables users to edit images with sketches and color strokes, is an interesting research problem with great application value. Existing works often treat it as a general inpainting task and do not fully leverage the semantic structural information in fashion images. Moreover, they directly utilize conventional convolution and normalization layers to restore the incomplete image, which tends to wash away the sketch and color information. In this paper, we propose a novel Fashion Editing Generative Adversarial Network (FE-GAN), which is capable of manipulating fashion images by free-form sketches and sparse color strokes. FE-GAN consists of two modules: 1) a free-form parsing network that learns to control the human parsing generation by manipulating sketch and color; 2) a parsing-aware inpainting network that renders detailed textures with semantic guidance from the human parsing map. A new attention normalization layer is further applied at multiple scales in the decoder of the inpainting network to enhance the quality of the synthesized image. Extensive experiments on high-resolution fashion image datasets demonstrate that the proposed method significantly outperforms the state-of-the-art methods on image manipulation.



قيم البحث

اقرأ أيضاً

375 - Qing Ping , Bing Wu , Wanying Ding 2019
In this paper, we introduce attribute-aware fashion-editing, a novel task, to the fashion domain. We re-define the overall objectives in AttGAN and propose the Fashion-AttGAN model for this new task. A dataset is constructed for this task with 14,221 and 22 attributes, which has been made publically available. Experimental results show the effectiveness of our Fashion-AttGAN on fashion editing over the original AttGAN.
Constructing high-quality generative models for 3D shapes is a fundamental task in computer vision with diverse applications in geometry processing, engineering, and design. Despite the recent progress in deep generative modelling, synthesis of finel y detailed 3D surfaces, such as high-resolution point clouds, from scratch has not been achieved with existing approaches. In this work, we propose to employ the latent-space Laplacian pyramid representation within a hierarchical generative model for 3D point clouds. We combine the recently proposed latent-space GAN and Laplacian GAN architectures to form a multi-scale model capable of generating 3D point clouds at increasing levels of detail. Our evaluation demonstrates that our model outperforms the existing generative models for 3D point clouds.
128 - Wu Shi , Tak-Wai Hui , Ziwei Liu 2019
Existing unconditional generative models mainly focus on modeling general objects, such as faces and indoor scenes. Fashion textures, another important type of visual elements around us, have not been extensively studied. In this work, we propose an effective generative model for fashion textures and also comprehensively investigate the key components involved: internal representation, latent space sampling and the generator architecture. We use Gram matrix as a suitable internal representation for modeling realistic fashion textures, and further design two dedicated modules for modulating Gram matrix into a low-dimension vector. Since fashion textures are scale-dependent, we propose a recursive auto-encoder to capture the dependency between multiple granularity levels of texture feature. Another important observation is that fashion textures are multi-modal. We fit and sample from a Gaussian mixture model in the latent space to improve the diversity of the generated textures. Extensive experiments demonstrate that our approach is capable of synthesizing more realistic and diverse fashion textures over other state-of-the-art methods.
With recent advances in supervised machine learning for medical image analysis applications, the annotated medical image datasets of various domains are being shared extensively. Given that the annotation labelling requires medical expertise, such la bels should be applied to as many learning tasks as possible. However, the multi-modal nature of each annotated image renders it difficult to share the annotation label among diverse tasks. In this work, we provide an inductive transfer learning (ITL) approach to adopt the annotation label of the source domain datasets to tasks of the target domain datasets using Cycle-GAN based unsupervised domain adaptation (UDA). To evaluate the applicability of the ITL approach, we adopted the brain tissue annotation label on the source domain dataset of Magnetic Resonance Imaging (MRI) images to the task of brain tumor segmentation on the target domain dataset of MRI. The results confirm that the segmentation accuracy of brain tumor segmentation improved significantly. The proposed ITL approach can make significant contribution to the field of medical image analysis, as we develop a fundamental tool to improve and promote various tasks using medical images.
Color compatibility is important for evaluating the compatibility of a fashion outfit, yet it was neglected in previous studies. We bring this important problem to researchers attention and present a compatibility learning framework as solution to va rious fashion tasks. The framework consists of a novel way to model outfit compatibility and an innovative learning scheme. Specifically, we model the outfits as graphs and propose a novel graph construction to better utilize the power of graph neural networks. Then we utilize both ground-truth labels and pseudo labels to train the compatibility model in a weakly-supervised manner.Extensive experimental results verify the importance of color compatibility alone with the effectiveness of our framework. With color information alone, our models performance is already comparable to previous methods that use deep image features. Our full model combining the aforementioned contributions set the new state-of-the-art in fashion compatibility prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا