ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear stability of slowly rotating Kerr black holes

107   0   0.0 ( 0 )
 نشر من قبل Peter Hintz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the linear stability of slowly rotating Kerr black holes as solutions of the Einstein vacuum equation: linearized perturbations of a Kerr metric decay at an inverse polynomial rate to a linearized Kerr metric plus a pure gauge term. We work in a natural wave map/DeTurck gauge and show that the pure gauge term can be taken to lie in a fixed 7-dimensional space with a simple geometric interpretation. Our proof rests on a robust general framework, based on recent advances in microlocal analysis and non-elliptic Fredholm theory, for the analysis of resolvents of operators on asymptotically flat spaces. With the mode stability of the Schwarzschild metric as well as of certain scalar and 1-form wave operators on the Schwarzschild spacetime as an input, we establish the linear stability of slowly rotating Kerr black holes using perturbative arguments; in particular, our proof does not make any use of special algebraic properties of the Kerr metric. The heart of the paper is a detailed description of the resolvent of the linearization of a suitable hyperbolic gauge-fixed Einstein operator at low energies. As in previous work by the second and third authors on the nonlinear stability of cosmological black holes, constraint damping plays an important role. Here, it eliminates certain pathological generalized zero energy states; it also ensures that solutions of our hyperbolic formulation of the linearized Einstein equation have the stated asymptotics and decay for general initial data and forcing terms, which is a useful feature in nonlinear and numerical applications.



قيم البحث

اقرأ أيضاً

We study the eigenvalues of the MOTS stability operator for the Kerr black hole with angular momentum per unit mass $|a| ll M$. We prove that each eigenvalue depends analytically on $a$ (in a neighbourhood of $a=0$), and compute its first nonvanishin g derivative. Recalling that $a=0$ corresponds to the Schwarzschild solution, where each eigenvalue has multiplicity $2ell+1$, we find that this degeneracy is completely broken for nonzero $a$. In particular, for $0 < |a| ll M$ we obtain a cluster consisting of $ell$ distinct complex conjugate pairs and one real eigenvalue. As a special case of our results, we get a simple formula for the variation of the principal eigenvalue. For perturbations that preserve the total area or mass of the black hole, we find that the principal eigenvalue has a local maximum at $a=0$. However, there are other perturbations for which the principal eigenvalue has a local minimum at $a=0$.
While cubic Quasi-topological gravity is unique, there is a family of quartic Quasi-topological gravities in five dimensions. These theories are defined by leading to a first order equation on spherically symmetric spacetimes, resembling the structur e of the equations of Lovelock theories in higher-dimensions, and are also ghost free around AdS. Here we construct slowly rotating black holes in these theories, and show that the equations for the off-diagonal components of the metric in the cubic theory are automatically of second order, while imposing this as a restriction on the quartic theories allows to partially remove the degeneracy of these theories, leading to a three-parameter family of Lagrangians of order four in the Riemann tensor. This shows that the parallel with Lovelock theory observed on spherical symmetry, extends to the realm of slowly rotating solutions. In the quartic case, the equations for the slowly rotating black hole are obtained from a consistent, reduced action principle. These functions admit a simple integration in terms of quadratures. Finally, in order to go beyond the slowly rotating regime, we explore the consistency of the Kerr-Schild ansatz in cubic Quasi-topological gravity. Requiring the spacetime to asymptotically match with the rotating black hole in GR, for equal oblateness parameters, the Kerr-Schild deformation of an AdS vacuum, does not lead to a solution for generic values of the coupling. This result suggests that in order to have solutions with finite rotation in Quasi-topological gravity, one must go beyond the Kerr-Schild ansatz.
110 - Oran Gannot 2016
This paper establishes the existence of quasinormal frequencies converging exponentially to the real axis for the Klein--Gordon equation on a Kerr-AdS spacetime when Dirichlet boundary conditions are imposed at the conformal boundary. The proof is ad apted from results in Euclidean scattering about the existence of scattering poles generated by time-periodic approximate solutions to the wave equation.
Hawking radiation from black holes has been studied as a phenomenon of quantum tunneling of particles through their horizons. We have extended this approach to study the tunneling of Dirac particles from a large class of black holes which includes th ose with acceleration and rotation as well. We have calculated the tunneling probability of incoming and outgoing particles, and recovered the correct Hawking temperature by this method.
Hawking radiation of uncharged and charged scalars from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using the tunnelin g method we recover the correct Hawking temperature as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا