ﻻ يوجد ملخص باللغة العربية
Standard flavors of density-functional theory (DFT) calculations are known to fail in describing anions, due to large self-interaction errors. The problem may be circumvented by using localized basis sets of reduced size, leaving no variational flexibility for the extra electron to delocalize. Alternatively, a recent approach exploiting DFT evaluations of total energies on electronic densities optimized at the Hartree-Fock (HF) level has been reported, showing that the self-interaction-free HF densities are able to lead to an improved description of the additional electron, returning affinities in close agreement with the experiments. Nonetheless, such an approach can fail when the HF densities are too inaccurate. Here, an alternative approach is presented, in which an embedding environment is used to stabilize the anion in a bound configuration. Similarly to the HF case, when computing total energies at the DFT level on these corrected densities, electron affinities in very good agreement with experiments can be recovered. The effect of the environment can be evaluated and removed by an extrapolation of the results to the limit of vanishing embedding. Moreover, the approach can be easily applied to DFT calculations with delocalized basis sets, e.g. plane-waves, for which alternative approaches are either not viable or more computationally demanding. The proposed extrapolation strategy can be thus applied also to extended systems, as often studied in condensed-matter physics and materials science, and we illustrate how the embedding environment can be exploited to determine the energy of an adsorbing anion - here a chloride ion on a metal surface - whose charge configuration would be incorrectly predicted by standard density functionals.
We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional Density Functional Theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term LDFT,
Accurate description of the excess charge in water cluster anions is challenging for standard semi-local and (global) hybrid density functional approximations (DFAs). Using the recent unitary invariant implementation of the Perdew-Zunger self-interac
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the por
Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. A
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent