ﻻ يوجد ملخص باللغة العربية
We extend Derricks theorem to the case of a generic irrotational curved spacetime adopting a strategy similar to the original proof. We show that a static relativistic star made of real scalar fields is never possible regardless of the geometrical properties of the (static) spacetimes. The generalised theorem offers a tool that can be used to check the stability of localised solutions of a number of types of scalar fields models as well as of compact objects of theories of gravity with a non-minimally coupled scalar degree of freedom.
We present a proof that quantum Yang-Mills theory can be consistently defined as a renormalized, perturbative quantum field theory on an arbitrary globally hyperbolic curved, Lorentzian spacetime. To this end, we construct the non-commutative algebra
The current race in quantum communication -- endeavouring to establish a global quantum network -- must account for special and general relativistic effects. The well-studied general relativistic effects include Shapiro time-delay, gravitational lens
We present a new approach to the problem of the thermodynamical equilibrium of a quantum relativistic fluid in a curved spacetime in the limit of small curvature. We calculate the mean value of local operators by expanding the four-temperature Killin
Hydrodynamics of the non-relativistic compressible fluid in the curved spacetime is derived using the generalized framework of the stochastic variational method (SVM) for continuum medium. The fluid-stress tensor of the resultant equation becomes asy
In classical General Relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration e