ﻻ يوجد ملخص باللغة العربية
The triple-alpha process, whereby evolved stars create carbon and oxygen, is believed to be fine-tuned to a high degree. Such fine-tuning is suggested by the unusually strong temperature dependence of the triple-alpha reaction rate at stellar temperatures. This sensitivity is due to the resonant character of the triple-alpha process, which proceeds through the so-called Hoyle state of $^{12}$C with spin-parity $0^+$. The question of fine-tuning can be studied within the {it ab initio} framework of nuclear lattice effective field theory, which makes it possible to relate {it ad hoc} changes in the energy of the Hoyle state to changes in the fundamental parameters of the nuclear Hamiltonian, which are the light quark mass $m_q$ and the electromagnetic fine-structure constant. Here, we update the effective field theory calculation of the sensitivity of the triple-alpha process to small changes in the fundamental parameters. In particular, we consider recent high-precision lattice QCD calculations of the nucleon axial coupling $g_A$, as well as new and more comprehensive results from stellar simulations of the production of carbon and oxygen. While the updated stellar simulations allow for much larger {it ad hoc} shifts in the Hoyle state energy than previously thought, recent lattice QCD results for the nucleon S-wave singlet and triplet scattering lengths now disfavor the scenario of no fine-tuning in the light quark mass $m_q$.
A new full three-body method is introduced to compute the rate of the triple-alpha capture reaction which is the primary source of $^{12}$C in stars. In this work, we combine the Faddeev hyperspherical harmonics and the R-matrix method to obtain a fu
The triple alpha reaction is a key to $^{12}$C production and is expected to occur in weakly-coupled, thermal plasmas as encountered in normal stars. We investigate how Coulomb screening affects the structure of a system of three alpha particles in s
The astrophysical capture process $alpha+d$ $rightarrow$ $^6$Li + $gamma$ is studied in a three-body model. The initial state is factorized into the deuteron bound state and the $alpha+d$ scattering state. The final nucleus $^6$Li(1+) is described
The successful precision measurement of the rate of muon capture on a proton by the MuCap Collaboration allows for a stringent test of the current theoretical understanding of this process. Chiral perturbation theory, which is a low-energy effective
We summarize our current understanding of the connection between the QCD phase line and the chemical freeze-out curve as deduced from thermal analyses of yields of particles produced in central collisions between relativistic nuclei.