ترغب بنشر مسار تعليمي؟ اضغط هنا

An update on fine-tunings in the triple-alpha process

351   0   0.0 ( 0 )
 نشر من قبل Ulf-G. Mei{\\ss}ner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The triple-alpha process, whereby evolved stars create carbon and oxygen, is believed to be fine-tuned to a high degree. Such fine-tuning is suggested by the unusually strong temperature dependence of the triple-alpha reaction rate at stellar temperatures. This sensitivity is due to the resonant character of the triple-alpha process, which proceeds through the so-called Hoyle state of $^{12}$C with spin-parity $0^+$. The question of fine-tuning can be studied within the {it ab initio} framework of nuclear lattice effective field theory, which makes it possible to relate {it ad hoc} changes in the energy of the Hoyle state to changes in the fundamental parameters of the nuclear Hamiltonian, which are the light quark mass $m_q$ and the electromagnetic fine-structure constant. Here, we update the effective field theory calculation of the sensitivity of the triple-alpha process to small changes in the fundamental parameters. In particular, we consider recent high-precision lattice QCD calculations of the nucleon axial coupling $g_A$, as well as new and more comprehensive results from stellar simulations of the production of carbon and oxygen. While the updated stellar simulations allow for much larger {it ad hoc} shifts in the Hoyle state energy than previously thought, recent lattice QCD results for the nucleon S-wave singlet and triplet scattering lengths now disfavor the scenario of no fine-tuning in the light quark mass $m_q$.



قيم البحث

اقرأ أيضاً

A new full three-body method is introduced to compute the rate of the triple-alpha capture reaction which is the primary source of $^{12}$C in stars. In this work, we combine the Faddeev hyperspherical harmonics and the R-matrix method to obtain a fu ll solution to the three-body $alpha+alpha+alpha$ continuum. Particular attention is paid to the long range effects caused by the pairwise Coulomb interactions. The new rate agrees with the NACRE rate for temperatures greater than 0.07 GK, but a large enhancement at lower temperature is found ($approx 10^{14}$ at 0.02 GK). Our results are compared to previous calculations where additional approximations were made. We show that the new rate does not significantly change the evolution of stars around one solar mass. In particular, such stars still undergo a red-giant phase consistent with observations, and no significant differences are found in the final white dwarfs.
The triple alpha reaction is a key to $^{12}$C production and is expected to occur in weakly-coupled, thermal plasmas as encountered in normal stars. We investigate how Coulomb screening affects the structure of a system of three alpha particles in s uch a plasma environment by precise three-body calculations within the Debye-Huckel approximation. A three-alpha model that has the Coulomb interaction modified in the Yukawa form is employed. Precise three-body wave functions are obtained by a superposition of correlated Gaussian bases with the aid of the stochastic variational method. The energy shifts of the Hoyle state due to the Coulomb screening are obtained as a function of the Debye screening length. The results, which automatically incorporate the finite size effect of the Hoyle state, are consistent with the conventional result based on the Coulomb correction to the chemical potentials of ions that are regarded as point charges in a weakly-coupled, thermal plasma. We have given a theoretical basis to the conventional point-charge approach to the Coulomb screening problem relevant for nuclear reactions in normal stars by providing the first evaluation of the Coulomb corrections to the $Q$ value of the triple alpha process that produces a finite size Hoyle state.
358 - E.M. Tursunov 2016
The astrophysical capture process $alpha+d$ $rightarrow$ $^6$Li + $gamma$ is studied in a three-body model. The initial state is factorized into the deuteron bound state and the $alpha+d$ scattering state. The final nucleus $^6$Li(1+) is described as a three-body bound state $alpha+n+p$ in the hyperspherical Lagrange-mesh method. The contribution of the E1 transition operator from the initial isosinglet states to the isotriplet components of the final state is estimated to be negligible. An estimation of the forbidden E1 transition to the isosinglet components of the final state is comparable with the corresponding results of the two-body model. However, the contribution of the E2 transition operator is found to be much smaller than the corresponding estimations of the two-body model. The three-body model perfectly matches the new experimental data of the LUNA collaboration with the spectroscopic factor 2.586 estimated from the bound-state wave functions of $^6$Li and deuteron.
The successful precision measurement of the rate of muon capture on a proton by the MuCap Collaboration allows for a stringent test of the current theoretical understanding of this process. Chiral perturbation theory, which is a low-energy effective field theory that preserves the symmetries and the pattern of symmetry breaking in the underlying theory of QCD, offers a systematic framework for describing $mu p$ capture and provides a basic test of QCD at the hadronic level. We describe how this effective theory with no free parameters reproduces the measured capture rate. A recent study has addressed new sources of uncertainties that were not considered in the previous works, and we review to what extent these uncertainties are now under control. Finally, the rationale for studying muon capture on the deuteron and some recent theoretical developments regarding this process are discussed.
We summarize our current understanding of the connection between the QCD phase line and the chemical freeze-out curve as deduced from thermal analyses of yields of particles produced in central collisions between relativistic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا