ﻻ يوجد ملخص باللغة العربية
The $epsilon$-approximate degree $deg_epsilon(f)$ of a Boolean function $f$ is the least degree of a real-valued polynomial that approximates $f$ pointwise to error $epsilon$. The approximate degree of $f$ is at least $k$ iff there exists a pair of probability distributions, also known as a dual polynomial, that are perfectly $k$-wise indistinguishable, but are distinguishable by $f$ with advantage $1 - epsilon$. Our contributions are: We give a simple new construction of a dual polynomial for the AND function, certifying that $deg_epsilon(f) geq Omega(sqrt{n log 1/epsilon})$. This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the $1/3$-approximate degree of any read-once DNF is $Omega(sqrt{n})$. We show that any pair of symmetric distributions on $n$-bit strings that are perfectly $k$-wise indistinguishable are also statistically $K$-wise indistinguishable with error at most $K^{3/2} cdot exp(-Omega(k^2/K))$ for all $k < K < n/64$. This implies that any symmetric function $f$ is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-$K$ coalitions with statistical error $K^{3/2} exp(-Omega(deg_{1/3}(f)^2/K))$ for all values of $K$ up to $n/64$ simultaneously. Previous secret sharing schemes required that $K$ be determined in advance, and only worked for $f=$ AND. Our analyses draw new connections between approximate degree and concentration phenomena. As a corollary, we show that for any $d < n/64$, any degree $d$ polynomial approximating a symmetric function $f$ to error $1/3$ must have $ell_1$-norm at least $K^{-3/2} exp({Omega(deg_{1/3}(f)^2/d)})$, which we also show to be tight for any $d > deg_{1/3}(f)$. These upper and lower bounds were also previously only known in the case $f=$ AND.
Secret sharing is a cryptographic discipline in which the goal is to distribute information about a secret over a set of participants in such a way that only specific authorized combinations of participants together can reconstruct the secret. Thus,
In this paper we define a kind of decomposition for a quantum access structure. We propose a conception of minimal maximal quantum access structure and obtain a sufficient and necessary condition for minimal maximal quantum access structure, which sh
We develop a connection between tripartite information $I_3$, secret sharing protocols and multi-unitaries. This leads to explicit ((2,3)) threshold schemes in arbitrary dimension minimizing tripartite information $I_3$. As an application we show tha
A secret can be an encrypted message or a private key to decrypt the ciphertext. One of the main issues in cryptography is keeping this secret safe. Entrusting secret to one person or saving it in a computer can conclude betrayal of the person or des
In this work, we investigate what kinds of quantum states are feasible to perform perfectly secure secret sharing, and present its necessary and sufficient conditions. We also show that the states are bipartite distillable for all bipartite splits, a