ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancing Transformation-based Defenses using a Distribution Classifier

291   0   0.0 ( 0 )
 نشر من قبل Connie Kou
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial attacks on convolutional neural networks (CNN) have gained significant attention and there have been active research efforts on defense mechanisms. Stochastic input transformation methods have been proposed, where the idea is to recover the image from adversarial attack by random transformation, and to take the majority vote as consensus among the random samples. However, the transformation improves the accuracy on adversarial images at the expense of the accuracy on clean images. While it is intuitive that the accuracy on clean images would deteriorate, the exact mechanism in which how this occurs is unclear. In this paper, we study the distribution of softmax induced by stochastic transformations. We observe that with random transformations on the clean images, although the mass of the softmax distribution could shift to the wrong class, the resulting distribution of softmax could be used to correct the prediction. Furthermore, on the adversarial counterparts, with the image transformation, the resulting shapes of the distribution of softmax are similar to the distributions from the clean images. With these observations, we propose a method to improve existing transformation-based defenses. We train a separate lightweight distribution classifier to recognize distinct features in the distributions of softmax outputs of transformed images. Our empirical studies show that our distribution classifier, by training on distributions obtained from clean images only, outperforms majority voting for both clean and adversarial images. Our method is generic and can be integrated with existing transformation-based defenses.



قيم البحث

اقرأ أيضاً

Topological data analysis aims to extract topological quantities from data, which tend to focus on the broader global structure of the data rather than local information. The Mapper method, specifically, generalizes clustering methods to identify sig nificant global mathematical structures, which are out of reach of many other approaches. We propose a classifier based on applying the Mapper algorithm to data projected onto a latent space. We obtain the latent space by using PCA or autoencoders. Notably, a classifier based on the Mapper method is immune to any gradient based attack, and improves robustness over traditional CNNs (convolutional neural networks). We report theoretical justification and some numerical experiments that confirm our claims.
As machine learning (ML) systems become pervasive, safeguarding their security is critical. Recent work has demonstrated that motivated adversaries could add adversarial perturbations to the test data to mislead ML systems. So far, most research has focused on providing provable robustness guarantees for ML models against a specific Lp norm bounded adversarial perturbation. However, in practice previous work has shown that there are other types of realistic adversarial transformations whose semantic meaning has been leveraged to attack ML systems. In this paper, we aim to provide a unified framework for certifying ML robustness against general adversarial transformations. First, we identify the semantic transformations as different categories: resolvable (e.g., Gaussian blur and brightness) and differentially resolvable transformations (e.g., rotation and scaling). We then provide sufficient conditions and strategies for certifying certain transformations. For instance, we propose a novel sampling-based interpolation approach with estimated Lipschitz upper bound to certify the robustness against differentially resolvable transformations. In addition, we theoretically optimize the smoothing strategies for certifying the robustness of ML models against different transformations. For instance, we show that smoothing by sampling from exponential distribution provides a tighter robustness bound than Gaussian. Extensive experiments on 7 semantic transformations show that our proposed unified framework significantly outperforms the state-of-the-art certified robustness approaches on several datasets including ImageNet.
Deep learning models are prone to being fooled by imperceptible perturbations known as adversarial attacks. In this work, we study how equipping models with Test-time Transformation Ensembling (TTE) can work as a reliable defense against such attacks . While transforming the input data, both at train and test times, is known to enhance model performance, its effects on adversarial robustness have not been studied. Here, we present a comprehensive empirical study of the impact of TTE, in the form of widely-used image transforms, on adversarial robustness. We show that TTE consistently improves model robustness against a variety of powerful attacks without any need for re-training, and that this improvement comes at virtually no trade-off with accuracy on clean samples. Finally, we show that the benefits of TTE transfer even to the certified robustness domain, in which TTE provides sizable and consistent improvements.
Despite the recent advances in a wide spectrum of applications, machine learning models, especially deep neural networks, have been shown to be vulnerable to adversarial attacks. Attackers add carefully-crafted perturbations to input, where the pertu rbations are almost imperceptible to humans, but can cause models to make wrong predictions. Techniques to protect models against adversarial input are called adversarial defense methods. Although many approaches have been proposed to study adversarial attacks and defenses in different scenarios, an intriguing and crucial challenge remains that how to really understand model vulnerability? Inspired by the saying that if you know yourself and your enemy, you need not fear the battles, we may tackle the aforementioned challenge after interpreting machine learning models to open the black-boxes. The goal of model interpretation, or interpretable machine learning, is to extract human-understandable terms for the working mechanism of models. Recently, some approaches start incorporating interpretation into the exploration of adversarial attacks and defenses. Meanwhile, we also observe that many existing methods of adversarial attacks and defenses, although not explicitly claimed, can be understood from the perspective of interpretation. In this paper, we review recent work on adversarial attacks and defenses, particularly from the perspective of machine learning interpretation. We categorize interpretation into two types, feature-level interpretation and model-level interpretation. For each type of interpretation, we elaborate on how it could be used for adversarial attacks and defenses. We then briefly illustrate additional correlations between interpretation and adversaries. Finally, we discuss the challenges and future directions along tackling adversary issues with interpretation.
Deep convolutional neural networks are susceptible to adversarial attacks. They can be easily deceived to give an incorrect output by adding a tiny perturbation to the input. This presents a great challenge in making CNNs robust against such attacks. An influx of new defense techniques have been proposed to this end. In this paper, we show that latent features in certain robust models are surprisingly susceptible to adversarial attacks. On top of this, we introduce a unified $ell_infty$-norm white-box attack algorithm which harnesses latent features in its gradient descent steps, namely LAFEAT. We show that not only is it computationally much more efficient for successful attacks, but it is also a stronger adversary than the current state-of-the-art across a wide range of defense mechanisms. This suggests that model robustness could be contingent on the effective use of the defenders hidden components, and it should no longer be viewed from a holistic perspective.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا