ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical properties of the velocity field for the 3D hydrodynamic turbulence onset

150   0   0.0 ( 0 )
 نشر من قبل Dmitry Agafontsev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the statistical correlation functions for the three-dimensional hydrodynamic turbulence onset when the dynamics is dominated by the pancake-like high-vorticity structures. With extensive numerical simulations, we systematically examine the two-points structure functions (moments) of velocity. We observe formation of the power-law scaling for both the longitudinal and the transversal moments in the same interval of scales as for the energy spectrum. The scaling exponents for the velocity structure functions demonstrate the same key properties as for the stationary turbulence case. In particular, the exponents depend on the order of the moment non-trivially, indicating the intermittency and the anomalous scaling, and the longitudinal exponents turn out to be slightly larger than the transversal ones. When the energy spectrum has power-law scaling close to the Kolmogorovs one, the longitudinal third-order moment shows close to linear scaling with the distance, in line with the Kolmogorovs 4/5-law despite the strong anisotropy.



قيم البحث

اقرأ أيضاً

We numerically investigate the spatial and temporal statistical properties of a dilute polymer solution in the elastic turbulence regime, i.e., in the chaotic flow state occurring at vanishing Reynolds and high Weissenberg numbers. We aim at elucidat ing the relations between measurements of flow properties performed in the spatial domain with the ones taken in the temporal domain, which is a key point for the interpretation of experimental results on elastic turbulence and to discuss the validity of Taylors hypothesis. To this end, we carry out extensive direct numerical simulations of the two-dimensional Kolmogorov flow of an Oldroyd-B viscoelastic fluid. Static point-like numerical probes are placed at different locations in the flow, particularly at the extrema of mean flow amplitude. The results in the fully developed elastic turbulence regime reveal large velocity fluctuations, as compared to the mean flow, leading to a partial breakdown of Taylors frozen-field hypothesis. While second-order statistics, probed by spectra and structure functions, display consistent scaling behaviors in the spatial and temporal domains, the third-order statistics highlight robust differences. In particular the temporal analysis fails to capture the skewness of streamwise longitudinal velocity increments. Finally, we assess both the degree of statistical inhomogeneity and isotropy of the flow turbulent fluctuations as a function of scale. While the system is only weakly non-homogenous in the cross-stream direction, it is found to be highly anisotropic at all scales.
We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A k ey step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter $gamma$ that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments (i.e. the structure functions), including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter $gamma$ and derive analytically the spectrum of exponents of the structure functions in a simplified non dissipative case. A perturbative expansion in power of $gamma$ shows that energy transfers, at leading order, indeed take place, justifying the dissipative nature of this random field.
531 - H. Mouri , A. Hori , M. Takaoka 2008
To study subregions of a turbulence velocity field, a long record of velocity data of grid turbulence is divided into smaller segments. For each segment, we calculate statistics such as the mean rate of energy dissipation and the mean energy at each scale. Their values significantly fluctuate, in lognormal distributions at least as a good approximation. Each segment is not under equilibrium between the mean rate of energy dissipation and the mean rate of energy transfer that determines the mean energy. These two rates still correlate among segments when their length exceeds the correlation length. Also between the mean rate of energy dissipation and the mean total energy, there is a correlation characterized by the Reynolds number for the whole record, implying that the large-scale flow affects each of the segments.
We obtain the von Karman-Howarth relation for the stochastically forced three-dimensional Hall-Vinen-Bekharvich-Khalatnikov (3D HVBK) model of superfluid turbulence in Helium ($^4$He) by using the generating-functional approach. We combine direct num erical simulations (DNSs) and analyitcal studies to show that, in the statistically steady state of homogeneous and isotropic superfluid turbulence, in the 3D HVBK model, the probability distribution function (PDF) $P(gamma)$, of the ratio $gamma$ of the magnitude of the normal fluid velocity and superfluid velocity, has power-law tails that scale as $P(gamma) sim gamma^3$, for $gamma ll 1$, and $P(gamma) sim gamma^{-3}$, for $gamma gg 1$. Furthermore, we show that the PDF $P(theta)$, of the angle $theta$ between the normal-fluid velocity and superfluid velocity exhibits the following power-law behaviors: $P(theta)sim theta$ for $theta ll theta_*$ and $P(theta)sim theta^{-4}$ for $theta_* ll theta ll 1$, where $theta_*$ is a crossover angle that we estimate. From our DNSs we obtain energy, energy-flux, and mutual-friction-transfer spectra, and the longitudinal-structure-function exponents for the normal fluid and the superfluid, as a function of the temperature $T$, by using the experimentally determined mutual-friction coefficients for superfluid Helium $^4$He, so our results are of direct relevance to superfluid turbulence in this system.
148 - Anupam Gupta 2014
We obtain, by extensive direct numerical simulations, trajectories of heavy inertial particles in two-dimensional, statistically steady, homogeneous, and isotropic turbulent flows, with friction. We show that the probability distribution function $ma thcal{P}(kappa)$, of the trajectory curvature $kappa$, is such that, as $kappa to infty$, $mathcal{P}(kappa) sim kappa^{-h_{rm r}}$, with $h_{rm r} = 2.07 pm 0.09$. The exponent $h_{rm r}$ is universal, insofar as it is independent of the Stokes number ($rm{St}$) and the energy-injection wave number. We show that this exponent lies within error bars of their counterparts for trajectories of Lagrangian tracers. We demonstrate that the complexity of heavy-particle trajectories can be characterized by the number $N_{rm I}(t,{rm St})$ of inflection points (up until time $t$) in the trajectory and $n_{rm I} ({rm St}) equiv lim_{ttoinfty} frac{N_{rm I} (t,{rm St})}{t} sim {rm St}^{-Delta}$, where the exponent $Delta = 0.33 pm0.02$ is also universal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا