ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical Studies of Barkhausen Switching Noise in Ferroelectric lead zirconate titanate (PZT) and BaTiO3: Critical Exponents and Temperature-dependence

92   0   0.0 ( 0 )
 نشر من قبل Chao Dun Tan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies of Barkhausen noise in PZT have been limited to the energy spectrum (slew rate response voltages versus time), showing agreement with avalanche models; in barium titanate other exponents have been measured acoustically, but only at ambient temperatures. In the present study we report the Omori exponent (-0.95$pm$0.03) for aftershocks in PZT and extend the barium titanate studies to a wider range of temperature.



قيم البحث

اقرأ أيضاً

266 - D. Phelan , X. Long , Y. Xie 2010
Neutron diffraction data obtained on single crystals of PbZr1-xTixO3 with x = 0.325 and x = 0.460, which lie on the pseudorhombohedral side of the morphotropic phase boundary, suggest a coexistence of rhombohedral (R3m/R3c) and monoclinic (Cm) domain s and that monoclinic order is enhanced by Ti substitution. A monoclinic phase with a doubled unit cell (Cc) is ruled out as the ground state.
135 - X.J. Lou , H.J. Zhang , Z.D. Luo 2014
The effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate (PZT) thin film was systematically investigated. It was found that electrical fatigue strongly affects the Rayleigh behaviour of the PZT film. Bo th the reversible and irreversible Rayleigh coefficients decrease with increasing the number of switching cycles. This phenomenon is attributed to the growth of an interfacial degraded layer between the electrode and the film during electrical cycling. The methodology used in this work could serve as an alternative non-destructive way for evaluating the fatigue endurance and degradation in dielectric properties of ferroelectric thin-film devices during applications.
Renewed interest has been witnessed in utilizing the piezoelectric response of $PbZr_{0.52}Ti_{0.48}O_{3}$ (PZT) films on glass substrates for applications such as data storage and adaptive optics. Accordingly, new methodologies are being explored to grow well-oriented PZT thin films to harvest a large piezoelectric response. However, thin film piezoelectric response is significantly reduced compared to intrinsic response due to substrate induced clamping, even when films are well-oriented. Here, a novel method is presented to grow preferentially (100)-oriented PZT films on glass substrates by utilizing crystalline nanosheets as seed layers. Furthermore, increasing the repetition frequency up to 20 Hz during pulsed laser deposition helps to tune the film microstructure to hierarchically ordered columns that leads to reduced clamping and enhanced piezoelectric response evidenced by transmission electron microscopy and analytical calculations. A large piezoelectric response of 280 pm/V is observed in optimally tuned structure which almost triples the highest reported piezoelectric response on glass. To confirm that the clamping compromises the piezoelectric response, denser films are deposited using a lower repetition frequency and a $BiFeO_{3}$ buffer layer resulting in significantly reduced piezoelectric responses. This paper demonstrates a novel method for PZT integration on glass substrates without compromising the large piezoelectric response.
Much attention has been given recently to flexible and wearable integrated-electronic devices, with a strong emphasis on real-time sensing, computing and communication technologies. Thin ferroelectric films exhibit switchable polarization and strong electro-mechanical coupling, and hence are in widespread use in such technologies, albeit not when flexed. Effects of extrinsic strain on thin ferroelectric films are still unclear, mainly due to the lack of suitable experimental systems that allow cross structural-functional characterization with in-situ straining. Moreover, although the effects of intrinsic strain on ferroelectric films, e.g. due to film-substrate lattice mismatch, have been investigated extensively, it is unclear how these effects are influenced by external strain. Here, we developed a method to strain thin films homogenously in-situ, allowing functional and structural characterization while retaining the sample under constant straining conditions in AFM and XRD. Using this method, we strained the seminal ferroelectric, PbZr0.2Ti0.8O3 that was grown on a flexible mica substrate, to reduce substrate clamping effects and increase the tetragonality. Consequently, we increased the domain stability, decreased the coercive field value and reduced imprint effects. This method allows also direct characterization of the relationship between the lattice parameters and nanoscale properties of other flexible materials.
125 - C. D. Tan 2018
Systems that produce crackling noises such as Barkhausen pulses are statistically similar and can be compared with one another. In this project, the Barkhausen noise of three ferroelectric lead zirconate titanate (PZT) samples were demonstrated to be compatible with avalanche statistics. The peaks of the slew-rate (time derivative of current $dI/dt$) squared, defined as jerks, were statistically analysed and shown to obey power-laws. The critical exponents obtained for three PZT samples (B, F and S) were 1.73, 1.64 and 1.61, respectively, with a standard deviation of 0.04. This power-law behaviour is in excellent agreement with recent theoretical predictions of 1.65 in avalanche theory. If these critical exponents do resemble energy exponents, they were above the energy exponent 1.33 derived from mean-field theory. Based on the power-law distribution of the jerks, we demonstrate that domain switching display self-organised criticality and that Barkhausen jumps measured as electrical noise follows avalanche theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا