ﻻ يوجد ملخص باللغة العربية
Budget Minimization is a scheduling problem with precedence constraints, i.e., a scheduling problem on a partially ordered set of jobs $(N, unlhd)$. A job $j in N$ is available for scheduling, if all jobs $i in N$ with $i unlhd j$ are completed. Further, each job $j in N$ is assigned real valued costs $c_{j}$, which can be negative or positive. A schedule is an ordering $j_{1}, dots, j_{vert N vert}$ of all jobs in $N$. The budget of a schedule is the external investment needed to complete all jobs, i.e., it is $max_{l in {0, dots, vert N vert } } sum_{1 le k le l} c_{j_{k}}$. The goal is to find a schedule with minimum budget. Rafiey et al. (2015) showed that Budget Minimization is NP-hard following from a reduction from a molecular folding problem. We extend this result and prove that it is NP-hard to $alpha(N)$-approximate the minimum budget even on bipartite partial orders. We present structural insights that lead to arguably simpler algorithms and extensions of the results by Rafiey et al. (2015). In particular, we show that there always exists an optimal solution that partitions the set of jobs and schedules each subset independently of the other jobs. We use this structural insight to derive polynomial-time algorithms that solve the problem to optimality on series-parallel and convex bipartite partial orders.
We consider acyclic r-colorings in graphs and digraphs: they color the vertices in r colors, each of which induces an acyclic graph or digraph. (This includes the dichromatic number of a digraph, and the arboricity of a graph.) For any girth and suff
We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipa
An incidence of an undirected graph G is a pair $(v,e)$ where $v$ is a vertex of $G$ and $e$ an edge of $G$ incident with $v$. Two incidences $(v,e)$ and $(w,f)$ are adjacent if one of the following holds: (i) $v = w$, (ii) $e = f$ or (iii) $vw = e$
We organize a table of regular graphs with minimal diameters and minimal mean path lengths, large bisection widths and high degrees of symmetries, obtained by enumerations on supercomputers. These optimal graphs, many of which are newly discovered, m
A homogeneous set of a graph $G$ is a set $X$ of vertices such that $2le lvert Xrvert <lvert V(G)rvert$ and no vertex in $V(G)-X$ has both a neighbor and a non-neighbor in $X$. A graph is prime if it has no homogeneous set. We present an algorithm