We use a Lagrangian perspective to show the limiting absorption principle on Riemannian scattering, i.e. asymptotically conic, spaces, and their generalizations. More precisely we show that, for non-zero spectral parameter, the `on spectrum, as well as the `off-spectrum, spectral family is Fredholm in function spaces which encode the Lagrangian regularity of generalizations of `outgoing spherical waves of scattering theory, and indeed this persists in the `physical half plane.