ﻻ يوجد ملخص باللغة العربية
When pre-processing observational data via matching, we seek to approximate each unit with maximally similar peers that had an alternative treatment status--essentially replicating a randomized block design. However, as one considers a growing number of continuous features, a curse of dimensionality applies making asymptotically valid inference impossible (Abadie and Imbens, 2006). The alternative of ignoring plausibly relevant features is certainly no better, and the resulting trade-off substantially limits the application of matching methods to wide datasets. Instead, Li and Fu (2017) recasts the problem of matching in a metric learning framework that maps features to a low-dimensional space that facilitates closer matches while still capturing important aspects of unit-level heterogeneity. However, that method lacks key theoretical guarantees and can produce inconsistent estimates in cases of heterogeneous treatment effects. Motivated by straightforward extension of existing results in the matching literature, we present alternative techniques that learn latent matching features through either MLPs or through siamese neural networks trained on a carefully selected loss function. We benchmark the resulting alternative methods in simulations as well as against two experimental data sets--including the canonical NSW worker training program data set--and find superior performance of the neural-net-based methods.
This paper provides an introduction to structural estimation methods for matching markets with transferable utility.
As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a cor
Score matching is a popular method for estimating unnormalized statistical models. However, it has been so far limited to simple, shallow models or low-dimensional data, due to the difficulty of computing the Hessian of log-density functions. We show
Matching two different sets of items, called heterogeneous set-to-set matching problem, has recently received attention as a promising problem. The difficulties are to extract features to match a correct pair of different sets and also preserve two t
We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution ov