Quantum noise radar: superresolution with quantum antennas by accessing spatiotemporal correlations


الملخص بالإنكليزية

We suggest overcoming the Rayleigh catastrophe and reaching superresolution for imaging with both spatially and temporally-correlated field of a superradiant quantum antenna. Considering far-field radiation of two interacting spontaneously emitting two-level systems, we show that for the measurement of the temporally-delayed second-order correlation function of the scattered field, the Fisher information does not tend to zero with diminishing the distance between a pair of scatterers even for non-sharp time-averaged detection. For position estimation of a larger number of scatterers, measurement of the time-delayed function is able to provide a considerable accuracy gain over the zero-delayed function. We show also that the superresolution with the considered quantum antenna can be achieved for both near-field imaging and estimating parameters of the antenna.

تحميل البحث