ﻻ يوجد ملخص باللغة العربية
Hydrodynamics is a general description for the flow of a fluid, and is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate. While various aspects of electron hydrodynamics were revealed in recent experiments, the fundamental spatial structure of hydrodynamic electrons, the Poiseuille flow profile, has remained elusive. In this work, we provide the first real-space imaging of Poiseuille flow of an electronic fluid, as well as visualization of its evolution from ballistic flow. Utilizing a scanning nanotube single electron transistor, we image the Hall voltage of electronic flow through channels of high-mobility graphene. We find that the profile of the Hall field across the channel is a key physical quantity for distinguishing ballistic from hydrodynamic flow. We image the transition from flat, ballistic field profiles at low temperature into parabolic field profiles at elevated temperatures, which is the hallmark of Poiseuille flow. The curvature of the imaged profiles is qualitatively reproduced by Boltzmann calculations, which allow us to create a phase diagram that characterizes the electron flow regimes. Our results provide long-sought, direct confirmation of Poiseuille flow in the solid state, and enable a new approach for exploring the rich physics of interacting electrons in real space.
Hydrodynamic flow of charge carriers in graphene is an energy flow unlike the usual mass flow in conventional fluids. In neutral graphene, the energy flow is decoupled from the electric current, making it difficult to observe the hydrodynamic effects
Determination of the path taken by a quantum particle leads to a suppression of interference and to a classical behavior. We employ here a quantum which path detector to perform accurate path determination in a two-path-electron-interferometer; leadi
In the presence of strong interactions, electrons in condensed matter systems can behave hydrodynamically thereby exhibiting classical fluid phenomena such as vortices and Poiseuille flow. While in most conductors large screening effects minimize ele
In the context of describing electrons in solids as a fluid in the hydrodynamic regime, we consider a flow of electrons in a channel of finite width, i.e.~a Poiseuille flow. The electrons are accelerated by a constant electric field. We develop the a
The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such a form of teleportation, across a metallic island