ترغب بنشر مسار تعليمي؟ اضغط هنا

Class numbers of CM algebraic tori, CM abelian varieties and components of unitary Shimura varieties

69   0   0.0 ( 0 )
 نشر من قبل Chia-Fu Yu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a formula for the class number of an arbitrary CM algebraic torus over $mathbb{Q}$. This is proved based on results of Ono and Shyr. As applications, we give formulas for numbers of polarized CM abelian varieties, of connected components of unitary Shimura varieties and of certain polarized abelian varieties over finite fields. We also give a second proof of our main result.



قيم البحث

اقرأ أيضاً

The integral model of a GU(n-1,1) Shimura variety carries a universal abelian scheme over it, and the dual top exterior power of its Lie algebra carries a natural hermitian metric. We express the arithmetic volume of this metrized line bundle, define d as an iterated self-intersection in the Gillet-Soule arithmetic Chow ring, in terms of logarithmic derivatives of Dirichlet L-functions.
We consider cycles on a 3-dimensional Shimura varieties attached to a unitary group, defined over extensions of a CM field $E$, which appear in the context of the conjectures of Gan, Gross, and Prasad cite{gan-gross-prasad}. We establish a vertical d istribution relation for these cycles over an anticyclotomic extension of $E$, complementing the horizontal distribution relation of cite{jetchev:unitary}, and use this to define a family of norm-compatible cycles over these fields, thus obtaining a universal norm construction similar to the Heegner $Lambda$-module constructed from Heegner points.
272 - M. Longo , S. Vigni 2011
We prove formulas for the p-adic logarithm of quaternionic Darmon points on p-adic tori and modular abelian varieties over Q having purely multiplicative reduction at p. These formulas are amenable to explicit computations and are the first to treat Stark-Heegner type points on higher-dimensional abelian varieties.
260 - David Helm , Yichao Tian , 2014
Let $F$ be a totally real field in which a fixed prime $p$ is inert, and let $E$ be a CM extension of $F$ in which $p$ splits. We fix two positive integers $r,s in mathbb N$. We investigate the Tate conjecture on the special fiber of $G(U(r,s) times U(s,r))$-Shimura variety. We construct cycles which we conjecture to generate the Tate classes and verify our conjecture in the case of $G(U(1,s) times U(s,1))$. We also discuss the general conjecture regarding special cycles on the special fibers of unitary Shimura varieties.
We study the local behavior of special cycles on Shimura varieties for $mathbf{U}(2, 1) times mathbf{U}(1, 1)$ in the setting of the Gan-Gross-Prasad conjectures at primes $tau$ of the totally real field of definition of the unitary spaces which are split in the corresponding totally imaginary quadratic extension. We establish a local formula for their fields of definition, and prove a distribution relation between the Galois and Hecke actions on them. This complements work of cite{jetchev:unitary} at inert primes, where the combinatorics of the formulas are reduced to calculations on the Bruhat--Tits trees, which in the split case must be replaced with higher-dimensional buildings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا