ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional rogue waves on zero background of the Davey-Stewartson II equation

172   0   0.0 ( 0 )
 نشر من قبل Jingsong He
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A prototypical example of a rogue wave structure in a two-dimensional model is presented in the context of the Davey-Stewartson~II (DS~II) equation arising in water waves. The analytical methodology involves a Taylor expansion of an eigenfunctionof the models Lax pair which is used to form a hierarchy of infinitely many new eigenfunctions. These are used for the construction of two-dimensional (2D) rogue waves (RWs) of the DS~II equation by the even-fold Darboux transformation (DT). The obtained 2D RWs, which are localized in both space and time, can be viewed as a 2D analogue of the Peregrine soliton and are thus natural candidates to describe oceanic RW phenomena,as well as ones in 2D fluid systems and water tanks.



قيم البحث

اقرأ أيضاً

General dark solitons and mixed solutions consisting of dark solitons and breathers for the third-type Davey-Stewartson (DS-III) equation are derived by employing the bilinear method. By introducing the two differential operators, semi-rational solut ions consisting of rogue waves, breathers and solitons are generated. These semi-rational solutions are given in terms of determinants whose matrix elements have simple algebraic expressions. Under suitable parametric conditions, we derive general rogue wave solutions expressed in terms of rational functions. It is shown that the fundamental (simplest) rogue waves are line rogue waves. It is also shown that the multi-rogue waves describe interactions of several fundamental rogue waves, which would generate interesting curvy wave patterns. The higher order rogue waves originate from a localized lump and retreat back to it. Several types of hybrid solutions composed of rogue waves, breathers and solitons have also been illustrated. Specifically, these semi-rational solutions have a new phenomenon: lumps form on dark solitons and gradual separation from the dark solitons is observed.
132 - Yulei Cao , Peng-Yan Hu , Yi Cheng 2020
Within the (2 + 1)-dimensional Korteweg-de Vries equation framework, new bilinear Backlund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation. By introducing an arbitrary function, a family of defo rmed soliton and deformed breather solutions are presented with the improved Hirotas bilinear method. Choosing the appropriate parameters, their interesting dynamic behaviors are shown in three-dimensional plots. Furthermore, novel rational solutions are generated by taking the limit of obtained solitons. Additionally, two dimensional [2D] rogue waves (localized in both space and time) on the soliton plane are presented, we refer to it as deformed 2D rogue waves. The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane, and its evolution process is analyzed in detail. The deformed 2D rogue wave solutions are constructed successfully, which are closely related to the arbitrary function. This new idea is also applicable to other nonlinear systems.
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we chara cterize the Lax spectrum for the double-periodic solutions and analyze rogue waves arising on their background. Magnification of the rogue waves is studied numerically.
119 - Takayuki Tsuchida 2020
This is a continuation of our previous paper arXiv:1904.07924, which is devoted to the construction of integrable semi-discretizations of the Davey-Stewartson system and a $(2+1)$-dimensional Yajima-Oikawa system; in this series of papers, we refer t o a discretization of one of the two spatial variables as a semi-discretization. In this paper, we construct an integrable semi-discrete Davey-Stewartson system, which is essentially different from the semi-discrete Davey-Stewartson system proposed in the previous paper arXiv:1904.07924. We first obtain integrable semi-discretizations of the two elementary flows that compose the Davey-Stewartson system by constructing their Lax-pair representations and show that these two elementary flows commute as in the continuous case. Then, we consider a linear combination of the two elementary flows to obtain a new integrable semi-discretization of the Davey-Stewartson system. Using a linear transformation of the continuous independent variables, one of the two elementary Davey-Stewartson flows can be identified with an integrable semi-discretization of the $(2+1)$-dimensional Yajima-Oikawa system proposed in https://link.aps.org/doi/10.1103/PhysRevE.91.062902 .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا