ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonons in Twisted Transition Metal Dichalcogenide Bilayers (Twistnonics): Ultra-soft Phasons, and a transition from Superlubric to Pinned Phase

79   0   0.0 ( 0 )
 نشر من قبل Indrajit Maity
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The tunability of the interlayer coupling by twisting one layer with respect to another layer of two-dimensional materials provides a unique way to manipulate the phonons and related properties. We refer to this engineering of phononic properties as Twistnonics. We study the effects of twisting on low-frequency shear (SM) and layer breathing (LBM) modes in transition metal dichalcogenide (TMD) bilayer using atomistic classical simulations. We show that these low-frequency modes are extremely sensitive to twist and can be used to infer the twist angle. We find unique ultra-soft phason modes (frequency $lesssim 1 mathrm{cm^{-1}}$, comparable to acoustic modes) for any non-zero twist, corresponding to an textit{effective} translation of the moir{e} lattice by relative displacement of the constituent layers in a non-trivial way. Unlike the acoustic modes, the velocity of the phason modes is quite sensitive to twist angle. As twist angle decreases, ($theta lesssim 3^{circ}, gtrsim 57^{circ}$) the ultra-soft modes represent the acoustic modes of the emergent soft moir{e} scale lattice. Also, new high-frequency SMs appear, identical to those in stable bilayer TMD ($theta = 0degree/60degree$), due to the overwhelming growth of stable stacking regions in relaxed twisted structures. Furthermore, we find remarkably different structural relaxation as $theta to 0^{circ}$, $to 60^{circ}$ due to sub-lattice symmetry breaking. Our study reveals the possibility of an intriguing $theta$ dependent superlubric to pinning behavior and of the existence of ultra-soft modes in textit{all} two-dimensional (2D) materials.



قيم البحث

اقرأ أيضاً

The long wavelength moire superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moire bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe$_2$ , at small twist angles using a combination of first principles density functional theory, continuum modeling, and Hartree-Fock approximation. We reveal the rich physics at small twist angles $theta<4^circ$, and identify a particular magic angle at which the top valence moire band achieves almost perfect flatness. In the vicinity of this magic angle, we predict the realization of a generalized Kane-Mele model with a topological flat band, interaction-driven Haldane insulator, and Mott insulators at the filling of one hole per moire unit cell. The combination of flat dispersion and uniformity of Berry curvature near the magic angle holds promise for realizing fractional quantum anomalous Hall effect at fractional filling. We also identify twist angles favorable for quantum spin Hall insulators and interaction-induced quantum anomalous Hall insulators at other integer fillings.
An important step in understanding the exotic electronic, vibrational, and optical properties of the moir{e} lattices is the inclusion of the effects of structural relaxation of the un-relaxed moir{e} lattices. Here, we propose novel structures for t wisted bilayer of transition metal dichalcogenides (TMDs). For $thetagtrsim 58.4^{circ}$, we show a dramatic reconstruction of the moir{e} lattices, leading to a trimerization of the unfavorable stackings. We show that the development of curved domain walls due to the three-fold symmetry of the stacking energy landscape is responsible for such lattice reconstruction. Furthermore, we show that the lattice reconstruction notably changes the electronic band-structure. This includes the occurrence of flat bands near the edges of the conduction as well as valence bands, with the valence band maximum, in particular, corresponding to localized states enclosed by the trimer. We also find possibilities for other complicated, entropy stabilized, lattice reconstructed structures.
Fabricating van der Waals (vdW) bilayer heterostructures (BL-HS) by stacking the same or different two-dimensional (2D) layers, offers a unique physical system with rich electronic and optical properties. Twist-angle between component layers has emer ged as a remarkable parameter that can control the period of lateral confinement, and nature of the exciton (Coulomb bound electron-hole pair) in reciprocal space thus creating exotic physical states including moire excitons. In this review article, we focus on opto-electronic properties of excitons in transition metal dichalcogenide (TMD) semiconductor twisted BL-HS. We look at existing evidence of moire excitons in localized and strongly correlated states, and at nanoscale mapping of moire superlattice and lattice-reconstruction. This review will be helpful in guiding the community as well as motivating work in areas such as near-field optical measurements and controlling the creation of novel physical states.
In twisted bilayers of semiconducting transition metal dichalcogenides (TMDs), a combination of structural rippling and electronic coupling gives rise to periodic moire potentials that can confine charged and neutral excitations. Here, we report expe rimental measurements of the structure and spectroscopic properties of twisted bilayers of WSe2 and MoSe2 in the H-stacking configuration using scanning tunneling microscopy (STM). Our experiments reveal that the moire potential in these bilayers at small angles is unexpectedly large, reaching values of above 300 meV for the valence band and 150 meV for the conduction band - an order of magnitude larger than theoretical estimates based on interlayer coupling alone. We further demonstrate that the moire potential is a non-monotonic function of moire wavelength, reaching a maximum at around a 13nm moire period. This non-monotonicity coincides with a drastic change in the structure of the moire pattern from a continuous variation of stacking order at small moire wavelengths to a one-dimensional soliton dominated structure at large moire wavelengths. We show that the in-plane structure of the moire pattern is captured well by a continuous mechanical relaxation model, and find that the moire structure and internal strain rather than the interlayer coupling is the dominant factor in determining the moire potential. Our results demonstrate the potential of using precision moire structures to create deeply trapped carriers or excitations for quantum electronics and optoelectronics.
120 - W. T. Geng , V. Wang , J. B. Lin 2020
We reveal by first-principles calculations that the interlayer binding in a twisted MoS2/MoTe2 heterobilayer decreases with increasing twist angle, due to the increase of the interlayer overlapping degree, a geometric quantity describing well the int erlayer steric effect. The binding energy is found to be a Gaussian-like function of twist angle. The resistance to rotation, an analogue to the interlayer sliding barrier, can also be defined accordingly. In sharp contrast to the case of MoS2 homobilayer, here the energy band gap reduces with increasing twist angle. We find a remarkable interlayer charge transfer from MoTe2 to MoS2 which enlarges the band gap, but this charge transfer weakens with greater twisting and interlayer overlapping degree. Our discovery provides a solid basis in twistronics and practical instruction in band structure engineering of van der Waals heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا