ﻻ يوجد ملخص باللغة العربية
In this paper, as a preparation of developing data analysis procedures for using 3-dimensional information offered by directional Dark Matter (DM) detection experiments, we study the patterns of the angular distribution of the Monte Carlo-generated 3-D velocity of halo Weakly Interacting Massive Particles (WIMPs) as well as apply the Bayesian fitting technique to reconstruct the radial distribution of the 3-D WIMP velocity. Besides the diurnal modulation of the angular WIMP velocity distribution, the so-called directionality of DM signals proposed in literature, we will also demonstrate possible annual modulations of both of the angular and the radial distributions of the 3-D WIMP velocity. Our Bayesian reconstruction results of (the annual modulation of) the radial WIMP velocity distribution will also be discussed in detail. For readers reference, the angular distribution patterns of the 3-D WIMP velocity in the laboratory (location)-dependent reference frames of several underground laboratories are given in the Appendix.
In this paper, as the third part of the third step of our study on developing data analysis procedures for using 3-dimensional information offered by directional direct Dark Matter detection experiments in the future, we introduce a 3-dimensional eff
In this paper, we extended our earlier work on the reconstruction of the (time-averaged) one-dimensional velocity distribution of Galactic Weakly Interacting Massive Particles (WIMPs) and introduce the Bayesian fitting procedure to the theoretically
In this paper, as the second part of the third step of our study on developing data analysis procedures for using 3-dimensional information offered by directional direct Dark Matter detection experiments in the future, we investigate the angular dist
Searches for WIMP dark matter will in the near future be sensitive to solar neutrinos. Directional detection offers a method to reject solar neutrinos and improve WIMP searches, but reaching that sensitivity with existing directional detectors poses
Directional detection of Dark Matter is a promising search strategy. However, to perform such detection, a given set of parameters has to be retrieved from the recoiling tracks : direction, sense and position in the detector volume. In order to optim