ﻻ يوجد ملخص باللغة العربية
For reentry or near space communication, owing to the influence of the time-varying plasma sheath channel environment, the received IQ baseband signals are severely rotated on the constellation. Researches have shown that the frequency of electron density varies from 20kHz to 100 kHz which is on the same order as the symbol rate of most TT&C communication systems and a mass of bandwidth will be consumed to track the time-varying channel with traditional estimation. In this paper, motivated by principal curve analysis, we propose a deep learning (DL) algorithm which called symmetric manifold network (SMN) to extract the curves on the constellation and classify the signals based on the curves. The key advantage is that SMN can achieve joint optimization of demodulation and channel estimation. From our simulation results, the new algorithm significantly reduces the symbol error rate (SER) compared to existing algorithms and enables accurate estimation of fading with extremely high bandwith utilization rate.
We propose a new machine-learning approach for fiber-optic communication systems whose signal propagation is governed by the nonlinear Schrodinger equation (NLSE). Our main observation is that the popular split-step method (SSM) for numerically solvi
In this work, we formulate the problem of estimating and selecting task-relevant temporal signal segments from a single EEG trial in the form of a Markov decision process and propose a novel reinforcement-learning mechanism that can be combined with
Sparse signal recovery problems from noisy linear measurements appear in many areas of wireless communications. In recent years, deep learning (DL) based approaches have attracted interests of researchers to solve the sparse linear inverse problem by
We present a method for computing exact reachable sets for deep neural networks with rectified linear unit (ReLU) activation. Our method is well-suited for use in rigorous safety analysis of robotic perception and control systems with deep neural net
For hourly PM2.5 concentration prediction, accurately capturing the data patterns of external factors that affect PM2.5 concentration changes, and constructing a forecasting model is one of efficient means to improve forecasting accuracy. In this stu