ترغب بنشر مسار تعليمي؟ اضغط هنا

An Immersive Virtual Reality Serious Game to Enhance Earthquake Behavioral Responses and Post-earthquake Evacuation Preparedness in Buildings

164   0   0.0 ( 0 )
 نشر من قبل Zhenan Feng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Enhancing the earthquake behavioral responses and post-earthquake evacuation preparedness of building occupants is beneficial to increasing their chances of survival and reducing casualties after the main shock of an earthquake. Traditionally, training approaches such as seminars, posters, videos or drills are applied to enhance preparedness. However, they are not highly engaging and have limited sensory capabilities to mimic life-threatening scenarios for the purpose of training potential participants. Immersive Virtual Reality (IVR) and Serious Games (SG) as innovative digital technologies can be used to create training tools to overcome these limitations. In this study, we propose an IVR SG-based training system to improve earthquake behavioral responses and post-earthquake evacuation preparedness. Auckland City Hospital was chosen as a case study to test our IVR SG training system. A set of learning outcomes based on best evacuation practice has been identified and embedded into several training scenarios of the IVR SG. Hospital staff (healthcare and administrative professionals) and visitors were recruited as participants to be exposed to these training scenarios. Participants preparedness has been measured along two dimensions: 1) Knowledge about best evacuation practice; 2) Self-efficacy in dealing with earthquake emergencies. Assessment results showed that there was a significant knowledge and self-efficacy increase after the training. And participants acknowledged that it was easy and engaging to learn best evacuation practice knowledge through the IVR SG training system.



قيم البحث

اقرأ أيضاً

An appropriate and safe behavior for exiting a facility is key to reducing injuries and increasing survival when facing an emergency evacuation in a building. Knowledge on the best evacuation practice is commonly delivered by traditional training app roaches such as videos, posters, or evacuation drills, but they may become ineffective in terms of knowledge acquisition and retention. Serious games (SGs) are an innovative approach devoted to training and educating people in a gaming environment. Recently, increasing attention has been paid to immersive virtual reality (IVR)-based SGs for evacuation knowledge delivery and behavior assessment because they are highly engaging and promote greater cognitive learning. This paper aims to understand the development and implementation of IVR SGs in the context of building evacuation training and research, applied to various indoor emergencies such as fire and earthquake. Thus, a conceptual framework for effective design and implementation through the systematic literature review method was developed. As a result, this framework integrates critical aspects and provides connections between them, including pedagogical and behavioral impacts, gaming environment development, and outcome and participation experience measures.
Enhancing evacuee safety is a key factor in reducing the number of injuries and deaths that result from earthquakes. One way this can be achieved is by training occupants. Virtual Reality (VR) and Serious Games (SGs), represent novel techniques that may overcome the limitations of traditional training approaches. VR and SGs have been examined in the fire emergency context, however, their application to earthquake preparedness has not yet been extensively examined. We provide a theoretical discussion of the advantages and limitations of using VR SGs to investigate how building occupants behave during earthquake evacuations and to train building occupants to cope with such emergencies. We explore key design components for developing a VR SG framework: (a) what features constitute an earthquake event, (b) which building types can be selected and represented within the VR environment, (c) how damage to the building can be determined and represented, (d) how non-player characters (NPC) can be designed, and (e) what level of interaction there can be between NPC and the human participants. We illustrate the above by presenting the Auckland City Hospital, New Zealand as a case study, and propose a possible VR SG training tool to enhance earthquake preparedness in public buildings.
The study aims to develop an application that will serve as an alternative learning tool for learning Asian Studies. The delivery of lessons into a virtual reality game depends on the pace of students. The developed application comprises several more features that enable users to get valuable information from an immersive environment. The researchers used Rapid Application Development (RAD) in developing the application. It follows phases such as requirement planning, user design, construction, and cutover. Two sets of questionnaires were developed, one for the teachers and another for the students. Then, testing and evaluation were conducted through purposive sampling to select the respondents. The application was overall rated as 3.56 which is verbally interpreted as very good. The result was based on the system evaluation using ISO 9126 in terms of functionality, usability, content, reliability, and performance. The developed application meets the objectives to provide an alternative learning tool for learning Asian Studies. The application is well commended and accepted by the end-users to provide an interactive and immersive environment for students to learn at their own pace. Further enhancement of the audio, gameplay, and graphics of the tool. Schools should take into consideration the adoption of the Asian Studies Virtual Reality is a good alternative tool for their teachers and students to teach and learn Asian Studies. The use of more 3D objects relevant to the given information to enhance the game experience may be considered. A databank for the quiz questions that will be loaded into the game should also be considered.
The field of Augmented Reality (AR) and Virtual Reality (VR) has seen massive growth in recent years. Numerous degree programs have started to redesign their curricula to meet the high market demand of such job positions. In this paper, we performed a content analysis of online job postings hosted on Indeed.com and provided a skill classification framework for AR/VR job positions. Furthermore, we present a ranking of the relevant skills for the job position. Overall, we noticed that technical skills like UI/UX design, software design, asset design and graphics rendering are highly desirable for AR/VR positions. Our findings regarding prominent skill categories could be beneficial for the human resource departments as well as enhancing existing course curricula to tailor to the high market demand.
Effective data visualization is a key part of the discovery process in the era of big data. It is the bridge between the quantitative content of the data and human intuition, and thus an essential component of the scientific path from data into knowl edge and understanding. Visualization is also essential in the data mining process, directing the choice of the applicable algorithms, and in helping to identify and remove bad data from the analysis. However, a high complexity or a high dimensionality of modern data sets represents a critical obstacle. How do we visualize interesting structures and patterns that may exist in hyper-dimensional data spaces? A better understanding of how we can perceive and interact with multi dimensional information poses some deep questions in the field of cognition technology and human computer interaction. To this effect, we are exploring the use of immersive virtual reality platforms for scientific data visualization, both as software and inexpensive commodity hardware. These potentially powerful and innovative tools for multi dimensional data visualization can also provide an easy and natural path to a collaborative data visualization and exploration, where scientists can interact with their data and their colleagues in the same visual space. Immersion provides benefits beyond the traditional desktop visualization tools: it leads to a demonstrably better perception of a datascape geometry, more intuitive data understanding, and a better retention of the perceived relationships in the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا