ترغب بنشر مسار تعليمي؟ اضغط هنا

How Rotating Solar Atmospheric Jets Become Kelvin--Helmholtz Unstable

121   0   0.0 ( 0 )
 نشر من قبل Ivan Zhelyazkov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations support the propagation of a number of magnetohydrodynamic (MHD) modes which, under some conditions, can become unstable and the developing instability is the Kelvin--Helmholtz instability (KHI). In its nonlinear stage the KHI can trigger the occurrence of wave turbulence which is considered as a candidate mechanism for coronal heating. We review the modeling of tornado-like phenomena in the solar chromosphere and corona as moving weakly twisted and spinning cylindrical flux tubes, showing that the KHI rises at the excitation of high-mode MHD waves. The instability occurs within a wavenumber range whose width depends on the MHD mode number emph{m}, the plasma density contrast between the rotating jet and its environment, and also on the twists of the internal magnetic field and the jet velocity. We have studied KHI in two twisted spinning solar polar coronal hole jets, in a twisted rotating jet emerging from a filament eruption, and in a rotating macrospicule. The theoretically calculated KHI development times of a few minutes for wavelengths comparable to the half-widths of the jets are in good agreement with the observationally determined growth times only for high order (10 $mathrm{leqslant}$ emph{m} $mathrm{leqslant}$ 65) MHD modes. Therefore, we expect that the observed KHI in these cases is due to unstable high-order MHD modes.



قيم البحث

اقرأ أيضاً

Observations show various jets in the solar atmosphere with significant rotational motions, which may undergo instabilities leading to heat ambient plasma. We study the Kelvin-Helmholtz (KH) instability of twisted and rotating jets caused by the velo city jumps near the jet surface. We derive a dispersion equation with appropriate boundary condition for total pressure (including centrifugal force of tube rotation), which governs the dynamics of incompressible jets. Then, we obtain analytical instability criteria of Kelvin-Helmholtz instability in various cases, which were verified by numerical solutions to the dispersion equation. We find that twisted and rotating jets are unstable to KH instability when the kinetic energy of rotation is more than the magnetic energy of the twist. Our analysis shows that the azimuthal magnetic field of 1-5 G can stabilize observed rotations in spicule/macrospicules and X-ray/EUV jets. On the other hand, non-twisted jets are always unstable to KH instability. In this case, the instability growth time is several seconds for spicule/macrospicules and few minutes (or less) for EUV/X-ray jets. We also find that standing kink and torsional Alfven waves are always unstable near the antinodes due to the jump of azimuthal velocity at the surface, while the propagating waves are generally stable. KH vortices may lead to enhanced turbulence development and heating of surrounding plasma, therefore rotating jets may provide energy for chromospheric and coronal heating.
Using data obtained by the high resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1-m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at disk center. Small-scale features, such a s Rapid Redshifted and Blueshifted Excursions, appearing as high speed jets in the wings of the H$alpha$ line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin-Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated with the KHI could be observed as broadening of chromospheric spectral lines. Analysis of the H$alpha$ line profiles shows that the detected structures have enhanced line widths with respect to the background. We also investigate the stability of a larger scale H$alpha$ jet that was ejected along the line-of-sight. Vortex-like features, rapidly developing around the jets boundary, are considered as evidence of the KHI. The analysis of the energy equation in the partially ionized plasma shows that the ion-neutral collisions may lead to the fast heating of the KH vortices over timescales comparable to the lifetime of chromospheric jets.
The Kelvin-Helmholtz (KH) instability is commonly found in many astrophysical, laboratory, and space plasmas. It could mix plasma components of different properties and convert dynamic fluid energy from large scale structure to smaller ones. In this study, we combined the ground-based New Vacuum Solar Telescope (NVST) and the Solar Dynamic Observatories (SDO) / Atmospheric Imaging Assembly (AIA) to observe the plasma dynamics associated with active region 12673 on 09 September 2017. In this multi-temperature view, we identified three adjacent layers of plasma flowing at different speeds, and detected KH instabilities at their interfaces. We could unambiguously track a typical KH vortex and measure its motion. We found that the speed of this vortex suddenly tripled at a certain stage. This acceleration was synchronized with the enhancements in emission measure and average intensity of the 193 AA{} data. We interpret this as evidence that KH instability triggers plasma heating. The intriguing feature in this event is that the KH instability observed in the NVST channel was nearly complementary to that in the AIA 193 AA{}. Such a multi-thermal energy exchange process is easily overlooked in previous studies, as the cold plasma component is usually not visible in the extreme ultraviolet channels that are only sensitive to high temperature plasma emissions. Our finding indicates that embedded cold layers could interact with hot plasma as invisible matters. We speculate that this process could occur at a variety of length scales and could contribute to plasma heating.
107 - Wenzhi Ruan 2018
Hard X-ray (HXR) sources are frequently observed near the top of solar flare loops, and the emission is widely ascribed to bremsstrahlung. We here revisit an alternative scenario which stresses the importance of inverse Compton processes and the Kelv in- Helmholtz instability (KHI) proposed by Fang et al. (2016). This scenario adds a novel ingredient to the standard flare model, where evaporation flows from flare-impacted chromospheric foot-points interact with each other near the loop top and produce turbulence via KHI. The turbulence can act as a trapping region and as an efficient accelerator to provide energetic electrons, which scatter soft X-ray (SXR) photons to HXR photons via the inverse Compton mechanism. This paper focuses on the trigger of the KHI and the resulting turbulence in this new scenario. We perform a parameter survey to investigate the necessary ingredients to obtain KHI through interaction of chromospheric evaporation flows. When turbulence is produced in the loop apex, an index of -5/3 can be found in the spectra of velocity and magnetic field fluctuations. The KHI development and the generation of turbulence are controlled by the amount of energy deposited in the chromospheric foot-points and the time scale of its energy deposition, but typical values for M class flares show the KHI development routinely. Asymmetry of energy deposition determines the location where the turbulence is produced, and the synthesized SXR light curve shows a clear periodic signal related to the sloshing motion of the vortex pattern created by the KHI.
116 - R. Kieokaew 2021
The Kelvin-Helmholtz instability (KHI) is a nonlinear shear-driven instability that develops at the interface between shear flows in plasmas. KHI has been inferred in various astrophysical plasmas and has been observed in situ at the magnetospheric b oundaries of solar-system planets and through remote sensing at the boundaries of coronal mass ejections. While it was hypothesized to play an important role in the mixing of plasmas and in triggering solar wind fluctuations, its direct and unambiguous observation in the solar wind was still lacking. We report in-situ observations of ongoing KHI in the solar wind using Solar Orbiter during its cruise phase. The KHI is found in a shear layer in the slow solar wind in the close vicinity of the Heliospheric Current Sheet, with properties satisfying linear theory for its development. An analysis is performed to derive the local configuration of the KHI. A 2-D MHD simulation is also set up with empirical values to test the stability of the shear layer. In addition, magnetic spectra of the KHI event are analyzed. We find that the observed conditions satisfy the KHI onset criterion from the linear theory analysis, and its development is further confirmed by the simulation. The current sheet geometry analyses are found to be consistent with KHI development. Additionally, we report observations of an ion jet consistent with magnetic reconnection at a compressed current sheet within the KHI interval. The KHI is found to excite magnetic and velocity fluctuations with power-law scalings that approximately follow $k^{-5/3}$ and $k^{-2.8}$ in the inertial and dissipation ranges, respectively. These observations provide robust evidence of KHI development in the solar wind. This sheds new light on the process of shear-driven turbulence as mediated by the KHI with implications for the driving of solar wind fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا