ترغب بنشر مسار تعليمي؟ اضغط هنا

Exposure Bias versus Self-Recovery: Are Distortions Really Incremental for Autoregressive Text Generation?

218   0   0.0 ( 0 )
 نشر من قبل Tianxing He
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Exposure bias has been regarded as a central problem for auto-regressive language models (LM). It claims that teacher forcing would cause the test-time generation to be incrementally distorted due to the training-generation discrepancy. Although a lot of algorithms have been proposed to avoid teacher forcing and therefore alleviate exposure bias, there is little work showing how serious the exposure bias problem actually is. In this work, we focus on the task of open-ended language generation, propose metrics to quantify the impact of exposure bias in the aspects of quality, diversity, and consistency. Our key intuition is that if we feed ground-truth data prefixes (instead of prefixes generated by the model itself) into the model and ask it to continue the generation, the performance should become much better because the training-generation discrepancy in the prefix is removed. Both automatic and human evaluations are conducted in our experiments. On the contrary to the popular belief in exposure bias, we find that the the distortion induced by the prefix discrepancy is limited, and does not seem to be incremental during the generation. Moreover, our analysis reveals an interesting self-recovery ability of the LM, which we hypothesize to be countering the harmful effects from exposure bias.



قيم البحث

اقرأ أيضاً

Unintended bias in Machine Learning can manifest as systemic differences in performance for different demographic groups, potentially compounding existing challenges to fairness in society at large. In this paper, we introduce a suite of threshold-ag nostic metrics that provide a nuanced view of this unintended bias, by considering the various ways that a classifiers score distribution can vary across designated groups. We also introduce a large new test set of online comments with crowd-sourced annotations for identity references. We use this to show how our metrics can be used to find new and potentially subtle unintended bias in existing public models.
114 - Zhiqing Sun , Yiming Yang 2020
Autoregressive (AR) models have been the dominating approach to conditional sequence generation, but are suffering from the issue of high inference latency. Non-autoregressive (NAR) models have been recently proposed to reduce the latency by generati ng all output tokens in parallel but could only achieve inferior accuracy compared to their autoregressive counterparts, primarily due to a difficulty in dealing with the multi-modality in sequence generation. This paper proposes a new approach that jointly optimizes both AR and NAR models in a unified Expectation-Maximization (EM) framework. In the E-step, an AR model learns to approximate the regularized posterior of the NAR model. In the M-step, the NAR model is updated on the new posterior and selects the training examples for the next AR model. This iterative process can effectively guide the system to remove the multi-modality in the output sequences. To our knowledge, this is the first EM approach to NAR sequence generation. We evaluate our method on the task of machine translation. Experimental results on benchmark data sets show that the proposed approach achieves competitive, if not better, performance with existing NAR models and significantly reduces the inference latency.
Self-training is one of the earliest and simplest semi-supervised methods. The key idea is to augment the original labeled dataset with unlabeled data paired with the models prediction (i.e. the pseudo-parallel data). While self-training has been ext ensively studied on classification problems, in complex sequence generation tasks (e.g. machine translation) it is still unclear how self-training works due to the compositionality of the target space. In this work, we first empirically show that self-training is able to decently improve the supervised baseline on neural sequence generation tasks. Through careful examination of the performance gains, we find that the perturbation on the hidden states (i.e. dropout) is critical for self-training to benefit from the pseudo-parallel data, which acts as a regularizer and forces the model to yield close predictions for similar unlabeled inputs. Such effect helps the model correct some incorrect predictions on unlabeled data. To further encourage this mechanism, we propose to inject noise to the input space, resulting in a noisy version of self-training. Empirical study on standard machine translation and text summarization benchmarks shows that noisy self-training is able to effectively utilize unlabeled data and improve the performance of the supervised baseline by a large margin.
76 - Richard Shin 2019
When translating natural language questions into SQL queries to answer questions from a database, we would like our methods to generalize to domains and database schemas outside of the training set. To handle complex questions and database schemas wi th a neural encoder-decoder paradigm, it is critical to properly encode the schema as part of the input with the question. In this paper, we use relation-aware self-attention within the encoder so that it can reason about how the tables and columns in the provided schema relate to each other and use this information in interpreting the question. We achieve significant gains on the recently-released Spider dataset with 42.94% exact match accuracy, compared to the 18.96% reported in published work.
Internet search affects peoples cognition of the world, so mitigating biases in search results and learning fair models is imperative for social good. We study a unique gender bias in image search in this work: the search images are often gender-imba lanced for gender-neutral natural language queries. We diagnose two typical image search models, the specialized model trained on in-domain datasets and the generalized representation model pre-trained on massive image and text data across the internet. Both models suffer from severe gender bias. Therefore, we introduce two novel debiasing approaches: an in-processing fair sampling method to address the gender imbalance issue for training models, and a post-processing feature clipping method base on mutual information to debias multimodal representations of pre-trained models. Extensive experiments on MS-COCO and Flickr30K benchmarks show that our methods significantly reduce the gender bias in image search models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا