ﻻ يوجد ملخص باللغة العربية
During the rapid development cycle for Internet products (websites and mobile apps), new features are developed and rolled out to users constantly. Features with code defects or design flaws can cause outages and significant degradation of user experience. The traditional method of code review and change management can be time-consuming and error-prone. In order to make the feature rollout process safe and fast, this paper proposes a methodology for rolling out features in an automated way using an adaptive experimental design. Under this framework, a feature is gradually ramped up from a small proportion of users to a larger population based on real-time evaluation of the performance of important metrics. If there are any regression detected during the ramp-up step, the ramp-up process stops and the feature developer is alerted. There are two main algorithm components powering this framework: 1) a continuous monitoring algorithm - using a variant of the sequential probability ratio test (SPRT) to monitor the feature performance metrics and alert feature developers when a metric degradation is detected, 2) an automated ramp-up algorithm - deciding when and how to ramp up to the next stage with larger sample size. This paper presents one monitoring algorithm and three ramping up algorithms including time-based, power-based, and risk-based (a Bayesian approach) schedules. These algorithms are evaluated and compared on both simulated data and real data. There are three benefits provided by this framework for feature rollout: 1) for defective features, it can detect the regression early and reduce negative effect, 2) for healthy features, it rolls out the feature quickly, 3) it reduces the need for manual intervention via the automation of the feature rollout process.
We introduce Deep Adaptive Design (DAD), a method for amortizing the cost of adaptive Bayesian experimental design that allows experiments to be run in real-time. Traditional sequential Bayesian optimal experimental design approaches require substant
In the case of a linear state space model, we implement an MCMC sampler with two phases. In the learning phase, a self-tuning sampler is used to learn the parameter mean and covariance structure. In the estimation phase, the parameter mean and covari
In this paper, we aim at solving a class of multiple testing problems under the Bayesian sequential decision framework. Our motivating application comes from binary labeling tasks in crowdsourcing, where the requestor needs to simultaneously decide w
We propose an optimization algorithm to compute the optimal sensor locations in experimental design in the formulation of Bayesian inverse problems, where the parameter-to-observable mapping is described through an integral equation and its discretiz
The current work is motivated by the need for robust statistical methods for precision medicine; as such, we address the need for statistical methods that provide actionable inference for a single unit at any point in time. We aim to learn an optimal