ﻻ يوجد ملخص باللغة العربية
The use of strongly bent crystals in spectrometers for pulses of a hard x-ray free-electron laser is explored theoretically. Diffraction is calculated in both dynamical and kinematical theories. It is shown that diffraction can be treated kinematically when the bending radius is small compared to the critical radius given by the ratio of the Bragg-case extinction length for the actual reflection to the Darwin width of this reflection. As a result, the spectral resolution is limited by the crystal thickness, rather than the extinction length, and can become better than the resolution of a planar dynamically diffracting crystal. As an example, we demonstrate that spectra of the 12 keV pulses can be resolved in 440 reflection from a 20 micron thick diamond crystal bent to a radius of 10 cm.
The equations for calculating diffraction profiles for bent crystals are revisited for both meridional and sagittal bending. Two approximated methods for computing diffraction profiles are treated: multilamellar and Penning-Polder. A common treatment
The resolution function of a spectrometer based on a strongly bent single crystal (bending radius of 10 cm or less) is evaluated. It is shown that the resolution is controlled by two parameters, (i) the ratio of the lattice spacing of the chosen refl
We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-r
We demonstrate that vacuum forming of 10-cm diameter silicon wafers of various crystallographic orientations under an x-ray permeable, flexible window can easily generate spherically bent crystal analyzers (SBCA) and toroidally bent crystal analyzers
We developed a new front-end application specific integrated circuit (ASIC) for the upgrade of the Maia x-ray microprobe. The ASIC instruments 32 configurable front-end channels that perform either positive or negative charge amplification, pulse sha