ﻻ يوجد ملخص باللغة العربية
We model evolution of plants in a world, made up of different locations, with multiple environments (mutually exclusive and collectively exhaustive subsets of locations). Each environment (landmass) has temperature, rainfall, and other attributes that directly affect plant growth and reproduction. Each plant has preferences for environment attributes. Depending on how suitable the environment is to the plants, seeds are released or death occurs. With every reproductive cycle, genetic mutations occur. To model competition, plants in compete for survival, and success is stochastically dependent on environmental fitness. Our model determines whether and how evolution occurs, and how the attributes of plants change and possibly converge over time in relation to the attributes of the environment.
Observed bimodal tree cover distributions at particular environmental conditions and theoretical models indicate that some areas in the tropics can be in either of the alternative stable vegetation states forest or savanna. However, when including sp
Background : The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a g
Understanding the relationship between genomic variation and variation in phenotypes for quantitative traits such as physiology, yield, fitness or behavior, will provide important insights for both predicting adaptive evolution and for breeding schem
We develop a modular mean field theory for a minimalistic model of the idiotypic network. The model comprises the random influx of new idiotypes and a deterministic selection. It describes the evolution of the idiotypic network towards complex modula
Dispersal-induced growth (DIG) occurs when two populations with time-varying growth rates, each of which, when isolated, would become extinct, are able to persist and grow exponentially when dispersal among the two populations is present. This work p