ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia Stellar Kinematics in the Head of the Orion A Cloud: Runaway Stellar Groups and Gravitational Infall

112   0   0.0 ( 0 )
 نشر من قبل Konstantin V. Getman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. V. Getman




اسأل ChatGPT حول البحث

This work extends previous kinematic studies of young stars in the Head of the Orion A cloud (OMC-1/2/3/4/5). It is based on large samples of infrared, optical, and X-ray selected pre-main sequence stars with reliable radial velocities and Gaia-derived parallaxes and proper motions. Stellar kinematic groups are identified assuming they mimic the motion of their parental gas. Several groups are found to have peculiar kinematics: the NGC 1977 cluster and two stellar groups in the Extended Orion Nebula (EON) cavity are caught in the act of departing their birthplaces. The abnormal motion of NGC 1977 may have been caused by a global hierarchical cloud collapse, feedback by massive Ori OB1ab stars, supersonic turbulence, cloud-cloud collision, and/or slingshot effect; the former two models are favored by us. EON groups might have inherited anomalous motions of their parental cloudlets due to small-scale `rocket effects from nearby OB stars. We also identify sparse stellar groups to the east and west of Orion A that are drifting from the central region, possibly a slowly expanding halo of the Orion Nebula Cluster. We confirm previously reported findings of varying line-of-sight distances to different parts of the clouds Head with associated differences in gas velocity. Three-dimensional movies of star kinematics show contraction of the groups of stars in OMC-1 and global contraction of OMC-123 stars. Overall, the Head of Orion A region exhibits complex motions consistent with theoretical models involving hierarchical gravitational collapse in (possibly turbulent) clouds with OB stellar feedback.



قيم البحث

اقرأ أيضاً

95 - Nicola Da Rio 2017
The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high resolution near infrared spectroscopic survey of young cluste rs. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of $sim2700$ stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities ($v_r$). The young stellar population remains kinematically associated with the molecular gas, following a $sim10:{rm{km:s}}^{-1}$ gradient along filament. However, near the center of the region, the $v_r$ distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of co-located stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion $sigma_v$ varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for on-going expansion, from a $v_r$--extinction correlation. In the southern filament, $sigma_v$ is $sim2$--$3$ times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar sub-populations, detached from the gas. On the contrary, $sigma_v$ decreases towards L1641S, where the population is again in agreement with a virial state.
We investigate the stellar kinematics of the Galactic disc in 7 $<$ $R$ $<$ 13,kpc using a sample of 118,945 red giant branch (RGB) stars from LAMOST and Gaia. We characterize the median, dispersion and skewness of the distributions of the 3D stellar velocities, actions and orbital parameters across the age-metallicity and the disc $R$ -- $Z$ plane. Our results reveal abundant but clear stellar kinematic patterns and structures in the age -- metallicity and the disc $R$ -- $Z$ plane. The most prominent feature is the strong variations of the velocity, action, and orbital parameter distributions from the young, metal-rich thin disc to the old, metal-poor thick disc, a number of smaller-scale structures -- such as velocity streams, north-south asymmetries, and kinematic features of spiral arms -- are clearly revealed. Particularly, the skewness of $V_{phi}$ and $J_{phi}$ reveals a new substructure at $Rsimeq12$,kpc and $Zsimeq0$,kpc, possibly related to dynamical effects of spiral arms in the outer disc. We further study the stellar migration through analysing the stellar orbital parameters and stellar birth radii. The results suggest that the thick disc stars near the solar radii and beyond are mostly migrated from the inner disc of $Rsim4 - 6$,kpc due to their highly eccentrical orbits. Stellar migration due to dynamical processes with angular momentum transfer (churning) are prominent for both the old, metal-rich stars (outward migrators) and the young metal-poor stars (inward migrators). The spatial distribution in the $R$ -- $Z$ plane for the inward migrators born at a Galactocentric radius of $>$12,kpc show clear age stratifications, possibly an evidence that these inward migrators are consequences of splashes triggered by merger events of satellite galaxies that have been lasted in the past few giga years.
Canis Major OB1 (CMa OB1) is a Galactic stellar association with a very intriguing star-formation scenario. There are more than two dozen known star clusters in its line of sight, but it is not clear which ones are physically associated with CMa OB1. We use a clustering code that employs 5-dimensional data from the Gaia DR2 catalogue to identify physical groups and obtain their astrometric parameters and, in addition, we use two different isochrone-fitting methods to estimate the ages of these groups. We find 15 stellar groups with distances between 570 pc and 1650 pc, including 10 previously known and 5 new open cluster candidates. Four groups, precisely the youngest ones ($<$ 20 Myr), CMa05, CMa06, CMa07 and CMa08, are confirmed to be part of CMa OB1. We find that CMa08, a new cluster candidate, may be the progenitor cluster of runaway stars. CMa06 coincides with the well-studied CMa R1 star-forming region. While CMa06 is still forming stars, due to the remaining material of the molecular cloud associated with the Sh 2-262 nebula, CMa05, CMa07 and CMa08 seem to be in more evolved stages of evolution, with no recent star-forming activity. The properties of these CMa OB1 physical groups fit well in a monolithic scenario of star formation, with a common formation mechanism, and having suffered multiple episodes of star formation. This suggests that the hierarchical model alone, which explains the populations of other parts of the same association, is not sufficient to explain its whole formation history.
402 - N. Matsunaga 2014
Classical Cepheids are useful tracers of the Galactic young stellar population because their distances and ages can be determined from their period-luminosity and period-age relations. In addition, the radial velocities and chemical abundance of the Cepheids can be derived from spectroscopic observations, providing further insights into the structure and evolution of the Galaxy. Here, we report the radial velocities of classical Cepheids near the Galactic Center, three of which were reported in 2011, the other reported for the first time. The velocities of these Cepheids suggest that the stars orbit within the Nuclear Stellar Disk, a group of stars and interstellar matter occupying a region of 200 pc around the Center, although the three-dimensional velocities cannot be determined until the proper motions are known. According to our simulation, these four Cepheids formed within the Nuclear Stellar Disk like younger stars and stellar clusters therein.
66 - Nicola Da Rio 2015
We present the results of the SDSS APOGEE INfrared Spectroscopy of Young Nebulous Clusters program (IN-SYNC) survey of the Orion A molecular cloud. This survey obtained high resolution near infrared (NIR) spectroscopy of about 2700 young pre-main seq uence stars throughout the region, acquired across five distinct fields spanning 6deg field of view (FOV). With these spectra, we have measured accurate stellar parameters (T_eff, log g, v sin i) and extinctions, and placed the sources in the Hertzsprung-Russel Diagram (HRD). We have also extracted radial velocities for the kinematic characterization of the population. We compare our measurements with literature results for a sub-sample of targets in order to assess the performances and accuracy of the survey. Source extinction shows evidence for dust grains that are larger than those in the diffuse interstellar medium (ISM): we estimate an average R_V=5.5 in the region. Importantly, we find a clear correlation between HRD inferred ages and spectroscopic surface-gravity inferred ages. This clearly indicates a real spread of stellar radii at fixed temperature, and together with additional correlations with extinction and with disk presence, strongly suggests a real spread of ages large than a few Myr. Focussing on the young population around NGC1980 iota Ori, which has previously been suggested to be a separate, foreground, older cluster, we confirm its older (5Myr) age and low A_V, but considering that its radial velocity distribution is indistinguishable from the Orion As population, we suggest that NGC1980 is part of Orion As star formation activity. Based on their stellar parameters and kinematic properties, we identify 383 new candidate members of Orion A, most of which are diskless sources in areas of the region poorly studied by previous works.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا