ﻻ يوجد ملخص باللغة العربية
Video object segmentation aims at accurately segmenting the target object regions across consecutive frames. It is technically challenging for coping with complicated factors (e.g., shape deformations, occlusion and out of the lens). Recent approaches have largely solved them by using backforth re-identification and bi-directional mask propagation. However, their methods are extremely slow and only support offline inference, which in principle cannot be applied in real time. Motivated by this observation, we propose a efficient detection-based paradigm for video object segmentation. We propose an unified One-Pass Video Segmentation framework (OVS-Net) for modeling spatial-temporal representation in a unified pipeline, which seamlessly integrates object detection, object segmentation, and object re-identification. The proposed framework lends itself to one-pass inference that effectively and efficiently performs video object segmentation. Moreover, we propose a maskguided attention module for modeling the multi-scale object boundary and multi-level feature fusion. Experiments on the challenging DAVIS 2017 demonstrate the effectiveness of the proposed framework with comparable performance to the state-of-the-art, and the great efficiency about 11.5 FPS towards pioneering real-time work to our knowledge, more than 5 times faster than other state-of-the-art methods.
In this work we present SwiftNet for real-time semisupervised video object segmentation (one-shot VOS), which reports 77.8% J &F and 70 FPS on DAVIS 2017 validation dataset, leading all present solutions in overall accuracy and speed performance. We
Modern multiple object tracking (MOT) systems usually follow the emph{tracking-by-detection} paradigm. It has 1) a detection model for target localization and 2) an appearance embedding model for data association. Having the two models separately exe
Most existing video tasks related to human focus on the segmentation of salient humans, ignoring the unspecified others in the video. Few studies have focused on segmenting and tracking all humans in a complex video, including pedestrians and humans
We propose an efficient inference framework for semi-supervised video object segmentation by exploiting the temporal redundancy of the video. Our method performs inference on selected keyframes and makes predictions for other frames via propagation b
This paper presents a novel approach for segmenting moving objects in unconstrained environments using guided convolutional neural networks. This guiding process relies on foreground masks from independent algorithms (i.e. state-of-the-art algorithms