ﻻ يوجد ملخص باللغة العربية
We report the Subaru Hyper Suprime-Cam (HSC) discovery of two Ly$alpha$ blobs (LABs), dubbed z70-1 and z49-1 at $z=6.965$ and $z=4.888$ respectively, that are Ly$alpha$ emitters with a bright ($log L_{rm Lyalpha}/{rm [erg s^{-1}]}>43.4$) and spatially-extended Ly$alpha$ emission, and present the photometric and spectroscopic properties of a total of seven LABs; the two new LABs and five previously-known LABs at $z=5.7-6.6$. The z70-1 LAB shows the extended Ly$alpha$ emission with a scale length of $1.4pm 0.2$ kpc, about three times larger than the UV continuum emission, making z70-1 the most distant LAB identified to date. All of the 7 LABs, except z49-1, exhibit no AGN signatures such as X-ray emission, {sc Nv}$lambda$1240 emission, or Ly$alpha$ line broadening, while z49-1 has a strong {sc Civ}$lambda$1548 emission line indicating an AGN on the basis of the UV-line ratio diagnostics. We carefully model the point-spread functions of the HSC images, and conduct two-component exponential profile fitting to the extended Ly$alpha$ emission of the LABs. The Ly$alpha$ scale lengths of the core (star-forming region) and the halo components are $r_{rm c}=0.6-1.2$ kpc and $r_{rm h}=2.0-13.8$ kpc, respectively. The average $r_{rm h}$ of the LABs falls on the extrapolation of the $r_{rm h}$-Ly$alpha$ luminosity relation of the Ly$alpha$ halos around VLT/MUSE star-forming galaxies at the similar redshifts, suggesting that typical LABs at $zgtrsim5$ are not special objects, but star-forming galaxies at the bright end.
The distribution of Ly$alpha$ emission is an presently accessible method for studying the state of the intergalactic medium (IGM) into the reionization era. We carried out deep spectroscopic observations in order to search for Ly$alpha$ emission from
In this work we model the observed evolution in comoving number density of Lyman-alpha blobs (LABs) as a function of redshift, and try to find which mechanism of emission is dominant in LAB. Our model calculates LAB emission both from cooling radiati
Ly$alpha$ emission from galaxies can be utilized to characterize the ionization state in the intergalactic medium (IGM). We report our search for Ly$alpha$ emission at $z>7$ using a comprehensive Keck/MOSFIRE near-infrared spectroscopic dataset, as p
We present a new catalog of $9318$ Ly$alpha$ emitter (LAE) candidates at $z = 2.2$, $3.3$, $4.9$, $5.7$, $6.6$, and $7.0$ that are photometrically selected by the SILVERRUSH program with a machine learning technique from large area (up to $25.0$ deg$
Ly-alpha blobs (LABs) offer insight into the complex interface between galaxies and their circumgalactic medium. Whilst some LABs have been found to contain luminous star-forming galaxies and active galactic nuclei that could potentially power the Ly