ﻻ يوجد ملخص باللغة العربية
We study the production of charmed hadrons $D^{0}$ and $Lambda_c^+$ in relativistic heavy-ion collisions using an improved quark coalescence model. In particular, we extend the usual coalescence model by letting a produced hadron to have the same velocity as the center-of-mass velocity of coalesced constituent quarks during hadronization to take into account the effect of collective flow in produced quark-gluon plasma. This results in a shift of charmed resonances of higher masses to larger transverse momenta ($p_T^{}$). Requiring all charm quarks of very low $p_T^{}$ to be converted to hadrons via coalescence and letting charm quarks not undergoing coalescence to hadronize by independent fragmentation, we obtain a good description of the measured yield ratio $Lambda_c^+/D^0$ as a function of $p_T^{}$ in $text{Au} + text{Au}$ collisions at $sqrt{s_{NN}}^{}=200$~GeV by the STAR Collaboration at the Relativistic Heavy Ion Collider.
We propose an improved quark coalescence model for spin alignment of vector mesons and polarization of baryons by spin density matrix with phase space dependence. The spin density matrix is defined through Wigner functions. Within the model we propos
The string melting version of a multi-phase transport model is often applied to high-energy heavy-ion collisions since the dense matter thus formed is expected to be in parton degrees of freedom. In this work we improve its quark coalescence componen
We develop for charmed hadron production in relativistic heavy-ion collisions a comprehensive coalescence model that includes an extensive set of $s$ and $p$-wave hadronic states as well as the strict energy-momentum conservation, which ensures the b
The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used
UrQMD phase-space coalescence calculations for the production of deuterons are compared with available data for various reactions from the GSI/FAIR energy regime up to LHC. It is found that the production process of deuterons, as reflected in their r