ﻻ يوجد ملخص باللغة العربية
We find exact formulas for the Extended Uncertainty Principle (EUP) for the Rindler and Friedmann horizons and show that they can be expanded to obtain asymptotic forms known from the previous literature. We calculate the corrections to Hawking temperature and Bekenstein entropy of a black hole in the universe due to Rindler and Friedmann horizons. The effect of the EUP is similar to the canonical corrections of thermal fluctuations and so it rises the entropy signalling further loss of information.
We present a formalism which allows for the perturbative derivation of the Extended Uncertainty Principle (EUP) for arbitrary spatial curvature models and observers. Entering the realm of small position uncertainties, we derive a general asymptotic E
This is the first of a series of papers in which we use analyticity properties of quantum fields propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has horizons and/or singularities. The nature and origin of t
The Generalized Uncertainty Principle and the related minimum length are normally considered in non-relativistic Quantum Mechanics. Extending it to relativistic theories is important for having a Lorentz invariant minimum length and for testing the m
One brief idea on the extended uncertainty relation and the dynamical quantization of space-time at the Planck scale is presented. The extended uncertainty relation could be a guiding principle toward the renormalizable quantum gravity. Cosmological
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. The