ﻻ يوجد ملخص باللغة العربية
One-bit radar, performing signal sampling and quantization by a one-bit ADC, is a promising technology for many civilian applications due to its low-cost and low-power consumptions. In this paper, problems encountered by one-bit LFMCW radar are studied and a two-stage target detection method termed as the dimension-reduced generalized approximate message passing (DR-GAMP) approach is proposed. Firstly, the spectrum of one-bit quantized signals in a scenario with multiple targets is analyzed. It is indicated that high-order harmonics may result in false alarms (FAs) and cannot be neglected. Secondly, based on the spectrum analysis, the DR-GAMP approach is proposed to carry out target detection. Specifically, linear preprocessing methods and target predetection are firstly adopted to perform the dimension reduction, and then, the GAMP algorithm is utilized to suppress high-order harmonics and recover true targets. Finally, numerical simulations are conducted to evaluate the performance of one-bit LFMCW radar under typical parameters. It is shown that compared to the conventional radar applying linear processing methods, one-bit LFMCW radar has about $1.3$ dB performance gain when the input signal-to-noise ratios (SNRs) of targets are low. In the presence of a strong target, it has about $1.0$ dB performance loss.
This work focuses on the reconstruction of sparse signals from their 1-bit measurements. The context is the one of 1-bit compressive sensing where the measurements amount to quantizing (dithered) random projections. Our main contribution shows that,
Information divergences are commonly used to measure the dissimilarity of two elements on a statistical manifold. Differentiable manifolds endowed with different divergences may possess different geometric properties, which can result in totally diff
In this paper, we reconsider the problem of detecting a matrix-valued rank-one signal in unknown Gaussian noise, which was previously addressed for the case of sufficient training data. We relax the above assumption to the case of limited training da
Dual-Functional Radar-Communication (DFRC) system is an essential and promising technique for beyond 5G. In this work, we propose a powerful and unified multi-antenna DFRC transmission framework, where an additional radar sequence is transmitted apar
We consider the problem of range-Doppler imaging using one-bit automotive LFMCW1 or PMCW radar that utilizes one-bit ADC sampling with time-varying thresholds at the receiver. The one-bit sampling technique can significantly reduce the cost as well a