ترغب بنشر مسار تعليمي؟ اضغط هنا

A Simple Receive Diversity Technique for Distributed Beamforming

124   0   0.0 ( 0 )
 نشر من قبل Elad Domanovitz
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple method is proposed for use in a scenario involving a single-antenna source node communicating with a destination node that is equipped with two antennas via multiple single-antenna relay nodes, where each relay is subject to an individual power constraint. Furthermore, ultra-reliable and low-latency communication are desired. The latter requirement translates to considering only schemes that make use of local channel state information. Whereas for a receiver equipped with a single antenna, distributed beamforming is a well known and adequate solution, no straightforward extension is known. In this paper, a scheme is proposed based on a space-time diversity transformation that is applied as a front-end operation at the destination node. This results in an effective unitary channel matrix replacing the scalar coefficient corresponding to each user. Each relay node then inverts its associated channel matrix, which is the generalization of undoing the channel phase in the classical case of distributed beamforming to a single-antenna receiver, and then repeats the message over the resulting gain-only channel. In comparison to a single-antenna destination node, the method doubles the diversity order without requiring any channel state information at the receiver while at the same time retaining the array gain offered by the relays.



قيم البحث

اقرأ أيضاً

We propose, analyze and demonstrate an architecture for scalable cooperative reception. In a cluster of N + 1 receive nodes, one node is designated as the final receiver, and the N other nodes act as amplify-and-forward relays which adapt their phase s such that the relayed signals add up constructively at the designated receiver. This yields received SNR scaling linearly with N, while avoiding the linear increase in overhead incurred by a direct approach in which received signals are separately quantized and transmitted for centralized processing. By transforming the task of long-distance distributed receive beamforming into one of local distributed transmit beamforming, we can leverage a scalable one-bit feedback algorithm for phase synchronization. We show that time division between the long-distance and local links eliminates the need for explicit frequency synchronization. We provide an analytical framework, whose results closely match Monte Carlo simulations, to evaluate the impact of phase noise due to relaying delay on the performance of the one-bit feedback algorithm. Experimental results from our prototype implementation on software-defined radios demonstrate the expected gains in received signal strength despite significant oscillator drift, and are consistent with results from our analytical framework.
In this letter the performance of multiple relay channels is analyzed for the situation in which multiple antennas are deployed only at the relays. The simple repetition-coded decodeand- forward protocol with two different antenna processing techniqu es at the relays is investigated. The antenna combining techniques are maximum ratio combining (MRC) for reception and transmit beamforming (TB) for transmission. It is shown that these distributed antenna combining techniques can exploit the full spatial diversity of the relay channels regardless of the number of relays and antennas at each relay, and offer significant power gain over distributed space-time coding techniques.
285 - Linlin Sun , Yaolu Qin , Feng Shu 2018
Medium-scale or large-scale receive antenna array with digital beamforming can be employed at receiver to make a significant interference reduction, but leads to expensive cost and high complexity of the RF-chain circuit. To deal with this issue, a c lassic analog-and-digital beamforming (ADB) structure was proposed in the literature for greatly reducing the number of RF-chains. Based on the ADB structure, we in this paper propose a robust hybrid ADB scheme to resist directions of arrival (DOAs) estimation errors. The key idea of our scheme is to employ null space projection (NSP) in analog beamforming domain and diagonal loading (DL) method in digital beamforming domain. Simulation results show that the proposed scheme performs more robustly, and moreover, has a significant improvement on the receive signal to interference plus noise ratio (SINR) compared to NSP ADB scheme and DL method.
We consider the problem of quantifying the Pareto optimal boundary in the achievable rate region over multiple-input single-output (MISO) interference channels, where the problem boils down to solving a sequence of convex feasibility problems after c ertain transformations. The feasibility problem is solved by two new distributed optimal beamforming algorithms, where the first one is to parallelize the computation based on the method of alternating projections, and the second one is to localize the computation based on the method of cyclic projections. Convergence proofs are established for both algorithms.
290 - Vaibhav Kumar , Barry Cardiff , 2020
Non-orthogonal multiple access (NOMA) is being widely considered as a potential candidate to enhance the spectrum utilization in beyond fifth-generation (B5G) communications. In this paper, we derive closed-form expressions for the ergodic rate and o utage probability of a multiple-antenna-assisted NOMA-based cooperative relaying system (CRS-NOMA). We present the performance analysis of the system for two different receive diversity schemes - selection combining (SC) and maximal-ratio combining (MRC), in Nakagami-m fading. We also evaluate the asymptotic behavior of the CRS-NOMA to determine the slope of the ergodic rate and diversity order. Our results show that in contrast to the existing CRS-NOMA systems, the CRS-NOMA with receive diversity outperforms its orthogonal multiple access (OMA) based counterpart even in the low-SNR regime, by achieving higher ergodic rate. Diversity analysis confirms that the CRS-NOMA achieves full diversity order using both SC and MRC schemes, and this diversity order depends on both the shape parameter m and the number of receive antennas. We also discuss the problem of optimal power allocation for the minimization of the outage probability of the system, and subsequently use this optimal value to obtain the ergodic rate. An excellent match is observed between the numerical and the analytical results, confirming the correctness of the derived analytical expressions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا