ﻻ يوجد ملخص باللغة العربية
Measurements of stellar properties of galaxies when the universe was less than one billion years old yield some of the only observational constraints of the onset of star formation. We present here the inclusion of textit{Spitzer}/IRAC imaging in the spectral energy distribution fitting of the seven highest-redshift galaxy candidates selected from the emph{Hubble Space Telescope} imaging of the Reionization Lensing Cluster Survey (RELICS). We find that for 6/8 textit{HST}-selected $zgtrsim8$ sources, the $zgtrsim8$ solutions are still strongly preferred over $zsim$1-2 solutions after the inclusion of textit{Spitzer} fluxes, and two prefer a $zsim 7$ solution, which we defer to a later analysis. We find a wide range of intrinsic stellar masses ($5times10^6 M_{odot}$ -- $4times10^9$ $M_{odot}$), star formation rates (0.2-14 $M_{odot}rm yr^{-1}$), and ages (30-600 Myr) among our sample. Of particular interest is Abell1763-1434, which shows evidence of an evolved stellar population at $zsim8$, implying its first generation of star formation occurred just $< 100$ Myr after the Big Bang. SPT0615-JD, a spatially resolved $zsim10$ candidate, remains at its high redshift, supported by deep textit{Spitzer}/IRAC data, and also shows some evidence for an evolved stellar population. Even with the lensed, bright apparent magnitudes of these $z gtrsim 8$ candidates (H = 26.1-27.8 AB mag), only the textit{James Webb Space Telescope} will be able further confirm the presence of evolved stellar populations early in the universe.
Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6 - 8 candidate high-redshift galaxies from
Large surveys of galaxy clusters with the Hubble and Spitzer Space Telescopes, including CLASH and the Frontier Fields, have demonstrated the power of strong gravitational lensing to efficiently deliver large samples of high-redshift galaxies. We ext
We explore stellar population properties separately in the bulge and the disk of double-component cluster galaxies to shed light on the formation of lenticular galaxies in dense environments. We study eight low-redshift clusters from the Sydney-AAO M
Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at z>6, in order to constrain the high-redshift galaxy luminosity functions. Here, we prese
We perform a comprehensive study of the stellar population properties of quiescent galaxies as a function of size and stellar mass to constrain the physical mechanism governing the stellar mass assembly and the likely evolutive scenarios that explain