ﻻ يوجد ملخص باللغة العربية
In a previous paper, we introduced a semi-device-independent scheme consisting of an untrusted source sending quantum states to an untrusted measuring device, with the sole assumption that the average energy of the states emitted by the source is bounded. Given this energy constraint, we showed that certain correlations between the source and the measuring device can only occur if the outcomes of the measurement are non-deterministic, i.e., these correlations certify the presence of randomness. In the present paper, we go further and show how to quantify the randomness as a function of the correlations and prove the soundness of a QRNG protocol exploiting this relation. For this purpose, we introduce (1) a semidefinite characterization of the set of quantum correlations, (2) an algorithm to lower-bound the Shannon entropy as a function of the correlations and (3) a proof of soundness using finite trials compatible with our energy assumption.
Quantum Bell nonlocality allows for the design of protocols that amplify the randomness of public and arbitrarily biased Santha-Vazirani sources, a classically impossible task. Information-theoretical security in these protocols is certified in a dev
We report on an optical setup generating more than one bit of randomness from one entangled bit (i.e. a maximally entangled state of two-qubits). The amount of randomness is certified through the observation of Bell non-local correlations. To attain
The amplified spontaneous emission (ASE) noise has been extensively studied and employed to build quantum random number generators (QRNGs). While the previous relative works mainly focus on the realization and verification of the QRNG system, the com
The no-signaling constraint on bi-partite correlations is reviewed. It is shown that in order to obtain non-trivial Bell-type inequalities that discern no-signaling correlations from more general ones, one must go beyond considering expectation value
Non-local correlations that obey the no-signalling principle contain intrinsic randomness. In particular, for a specific Bell experiment, one can derive relations between the amount of randomness produced, as quantified by the min-entropy of the outp