ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-mass and High-mass Supermassive Blackholes In Radio-Loud AGNs Are Spun-up in Different Evolution Paths

61   0   0.0 ( 0 )
 نشر من قبل Jing Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How Supermassive Blackholes (SMBHs) are spun-up is a key issue of modern astrophysics. As an extension of the study in Wang et al. (2016), we here address the issue by comparing the host galaxy properties of nearby ($z<0.05$) radio-selected Seyfert 2 galaxies. With the two-dimensional bulge+disk decompositions for the SDSS $r$-band images, we identify a dichotomy on various host galaxy properties for the radio-powerful SMBHs. By assuming the radio emission from the jet reflects a high SMBH spin, which stems from the well-known BZ mechanism of jet production, high-mass SMBHs (i.e., $M_{mathrm{BH}}>10^{7.9}M_odot$) have a preference for being spun-up in classical bulges, and low-mass SMBHs (i.e., $M_{mathrm{BH}}=10^{6-7}M_odot$) in pseudo-bulges. This dichotomy suggests and confirms that high-mass and low-mass SMBHs are spun-up in different ways, i.e., a major dry merger and a secular evolution.



قيم البحث

اقرأ أيضاً

H{sc i} absorption studies of active galaxies enable us to probe their circumnuclear regions and the general interstellar medium, and study the supply of gas which may trigger the nuclear activity. In this paper, we investigate the detection rate of H{sc i} absorption on the nature of radio galaxies based on their emission-line spectra, nature of the host galaxies based on the textit{WISE} colours and their radio structure, which may help understand the different accretion modes. We find significant difference in distributions of W2$-$W3 colour for sources with H{sc i} absorption detections and non-detections. We report a high detection rate of H{sc i} absorption in the galaxies with textit{WISE} infrared colours W2$-$W3 $>$ 2, which is typical of gas-rich systems, along with a compact radio structure. The H{sc i} detection rate for low-excitation radio galaxies (LERGs) with W2$-$W3 $>$ 2 and compact radio structure is high (70.6$pm$20.4 %). In HERGs, compact radio structure in the nuclear or circumnuclear region could give rise to absorption by gas in the dusty torus in addition to gas in the interstellar medium. However, higher specific star formation rate (sSFR) for the LERGs with W2$-$W3 $>$ 2 suggests that H{sc i} absorption may be largely due to star-forming gas in their hosts. LERGs with extended radio structure tend to have significantly lower values of W2$-$W3 compared to those with compact structure. Extended radio sources and those with W2$-$W3 $<$ 2 have low H{sc i} detection rates.
172 - H. T. Liu , H. C. Feng , J. M. Bai 2015
In this paper, we investigate the influences of two continuum radiation pressures of the central engines on the black hole mass estimates for 40 active galactic nuclei (AGNs) with high accretion rates. The two continuum radiation pressure forces, usu ally believed negligible or not considered, are from the free electron Thomson scattering, and the recombination and re-ionization of hydrogen ions that continue to absorb ionizing photons to compensate for the recombination. The masses counteracted by the two radiation pressures $M_{rm{RP}}$ depend sensitively on the percent of ionized hydrogen in the clouds $beta$, and are not ignorable compared to the black hole virial masses $M_{rm{RM}}$, estimated from the reverberation mapping method, for these AGNs. As $beta$ increases, $M_{rm{RP}}$ also does. The black hole masses $M_{rm{bullet}}$ could be underestimated at least by a factor of 30--40 percent for some AGNs accreting around the Eddington limit, regardless of redshifts of sources $z$. Some AGNs at $z < 0.3$ and quasars at $z ga 6.0$ have the same behaviors in the plots of $M_{rm{RP}}$ versus $M_{rm{RM}}$. The complete radiation pressures will be added as AGNs match $M_{rm{RP}}ga 0.3 M_{rm{RM}}$ due to the two continuum radiation pressures. Compared to $M_{rm{RM}}$, $M_{rm{bullet}}$ might be extremely underestimated if considering the complete radiation pressures for the AGNs accreting around the Eddington limit.
178 - J. Wang , Y. Xu , D. W. Xu 2016
The origin of spin of low-mass supermassive black hole (SMBH) is still a puzzle at present. We here report a study on the host galaxies of a sample of radio-selected nearby ($z<0.05$) Seyfert 2 galaxies with a BH mass of $10^{6-7} M_odot$. By modelin g the SDSS $r$-band images of these galaxies through a 2-dimensional bulge+disk decomposition, we identify a new dependence of SMBHs radio power on host bulge surface brightness profile, in which more powerful radio emission comes from a SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHs are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH-BH merger in the merger evolution.
Carbon stars (with C/O> 1) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. The case is nearly iron-clad now that the formerly mysterious dwarf carbon (dC) stars are actually far more com mon than C giants, and have accreted carbon-rich material from a former AGB companion, yielding a white dwarf and a dC star that has gained both significant mass and angular momentum. Some such dC systems have undergone a planetary nebula phase, and some may evolve to become CH, CEMP, or Ba giants. Recent studies indicate that most dCs are likely from older, metal-poor kinematic populations. Given the well-known anti-correlation of age and activity, dCs would not be expected to show significant X-ray emission related to coronal activity. However, accretion spin-up might be expected to rejuvenate magnetic dynamos in these post mass-transfer binary systems. We describe our Chandra pilot study of six dCs selected from the SDSS for Halpha emission and/or a hot white dwarf companion, to test whether their X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo. We detect all 6 dCs in the sample, which have X-ray luminosities ranging from logLx= 28.5 - 29.7, preliminary evidence that dCs may be active at a level consistent with stars that have short rotation periods of several days or less. More definitive results require a sample of typical dCs with deeper X-ray observations to better constrain their plasma temperatures.
Distant powerful radio-loud active galactic nuclei (RLAGN) tend to reside in dense environments and are commonly found in proto-clusters at z > 1.3. We examine whether this occurs because RLAGN are hosted by massive galaxies, which preferentially res ide in rich environments. We compare the environments of powerful RLAGN at 1.3 < z < 3.2 from the CARLA survey to a sample of radio-quiet galaxies matched in mass and redshift. We find the environments of RLAGN are significantly denser than those of radio-quiet galaxies, implying that not more than 50% of massive galaxies in this epoch can host powerful radio-loud jets. This is not an observational selection effect as we find no evidence to suggest it is easier to observe the radio emission when the galaxy resides in a dense environment. We therefore suggest that the dense Mpc-scale environment fosters the formation of a radio-jet from an AGN. We show that the number density of potential RLAGN host galaxies is consistent with every > 10^14 solar mass cluster having experienced powerful radio-loud feedback of duration ~60 Myr during 1.3 < z < 3.2. This feedback could heat the intracluster medium to the extent of 0.5-1 keV per gas particle, which could limit the amount of gas available for further star formation in the proto-cluster galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا