ﻻ يوجد ملخص باللغة العربية
We report on the realization and verification of quantum entanglement between an NV electron spin qubit and a telecom-band photonic qubit. First we generate entanglement between the spin qubit and a 637 nm photonic time-bin qubit, followed by photonic quantum frequency conversion that transfers the entanglement to a 1588 nm photon. We characterize the resulting state by correlation measurements in different bases and find a lower bound to the Bell state fidelity of F = 0.77 +/- 0.03. This result presents an important step towards extending quantum networks via optical fiber infrastructure.
Superconducting circuits offer a scalable platform for the construction of large-scale quantum networks where information can be encoded in multiple temporal modes of propagating microwaves. Characterization of such microwave signals with a method ex
Hybrid matter-photon entanglement is the building block for quantum networks. It is very favorable if the entanglement can be prepared with a high probability. In this paper, we report the deterministic creation of entanglement between an atomic ense
The successful employment of high-dimensional quantum correlations and its integration in telecommunication infrastructures is vital in cutting-edge quantum technologies for increasing robustness and key generation rate. Position-momentum Einstein-Po
A localized qubit entangled with a propagating quantum field is well suited to study non-local aspects of quantum mechanics and may also provide a channel to communicate between spatially separated nodes in a quantum network. Here, we report the on d
A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realising a single qubit that can b