ﻻ يوجد ملخص باللغة العربية
We investigate the charged particle spectra produced in the heavy-ion collisions at nine centralities from different systems, i.e., Pb+Pb at $sqrt{s_{NN}}=2.76$ TeV and 5.02 TeV as well as Xe+Xe at $sqrt{s_{NN}}=5.44$ TeV, at Large Hadron Collider (LHC) using one empirical formula inspired by the solution of the Fokker-Planck equation, dubbed as the generalized Fokker-Planck solution (GFPS). Our results show that the GFPS can reproduce the experimental particle spectrum up to transverse momentum $p_T$ about 45 GeV/c with the maximum discrepancy 30% covering 10 orders of magnitude. The discrepancy between the data and the results from the GFPS decreases to 15% when the maximum of the charged particle transverse momentum is cut to 20 GeV/c. We confirmed that the Tsallis distribution derived from the non-extensive statistics, which can reproduce the particle spectra produced in small collision systems, such as p+p, up to few hundreds GeV/c, can only apply to systematically study the particle spectra up to 8 GeV/c in A+A collisions at LHC, as pointed out in the study of identified particle spectra in Pb+Pb collisions at $sqrt{s_{NN}}=2.76$ TeV. The possible explanation why GFPS functions well is also discussed.
We study the diffusion of charm and beauty in the early stage of high energy nuclear collisions at RHIC and LHC energies, considering the interaction of these heavy quarks with the evolving Glasma by means of the Wong equations. In comparison with pr
Photoproduction of heavy quarks in ultraperipheral collisions can help elucidate important features of the physics of heavy quarks in Quantum Chromodynamics (QCD). Due to the dependence on parton distributions it can also potentially offer some const
Transverse momentum spectra of identified particles produced in heavy-ion collisions at the Large Hadron Collider are described with relativistic fluid dynamics. We perform a systematic comparison of experimental data for pions, kaons and protons up
The dynamics of partons and hadrons in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for the partonic phase (DQPM) inclu
We investigate the $LambdaLambda$ and $K^-p$ intensity correlations in high-energy heavy-ion collisions. First, we examine the dependence of the $LambdaLambda$ correlation on the $LambdaLambda$ interaction and the $LambdaLambda$ pair purity probabili