ترغب بنشر مسار تعليمي؟ اضغط هنا

Entangled States as Robust and Re-usable Carriers of Information

110   0   0.0 ( 0 )
 نشر من قبل Vahid Karimipour
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entangled states can be used as secure carriers of information much in the same way as carriers are used in classical communications. In such protocols, quantum states are uploaded to the carrier at one end and are downloaded from it in safe form at the other end, leaving the carrier intact and ready for reuse. Furthermore, protocols have been designed for performing quantum state sharing in this way. In this work, we study the robustness of these protocols against noise and show that multiple uses of these carriers do not lead to accumulative errors, rather the error remains constant and under control.



قيم البحث

اقرأ أيضاً

Preparing and certifying bound entangled states in the laboratory is an intrinsically hard task, due to both the fact that they typically form narrow regions in the state space, and that a certificate requires a tomographic reconstruction of the dens ity matrix. Indeed, the previous experiments that have reported the preparation of a bound entangled state relied on such tomographic reconstruction techniques. However, the reliability of these results crucially depends on the extra assumption of an unbiased reconstruction. We propose an alternative method for certifying the bound entangled character of a quantum state that leads to a rigorous claim within a desired statistical significance, while bypassing a full reconstruction of the state. The method is comprised by a search for bound entangled states that are robust for experimental verification, and a hypothesis test tailored for the detection of bound entanglement that is naturally equipped with a measure of statistical significance. We apply our method to families of states of $3times 3$ and $4times 4$ systems, and find that the experimental certification of bound entangled states is well within reach.
Self-testing refers to a method with which a classical user can certify the state and measurements of quantum systems in a device-independent way. Especially, the self-testing of entangled states is of great importance in quantum information process. A comprehensible example is that violating the CHSH inequality maximally necessarily implies the bipartite shares a singlet. One essential question in self-testing is that, when one observes a non-maximum violation, how close is the tested state to the target state (which maximally violates certain Bell inequality)? The answer to this question describes the robustness of the used self-testing criterion, which is highly important in a practical sense. Recently, J. Kaniewski predicts two analytic self-testing bounds for bipartite and tripartite systems. In this work, we experimentally investigate these two bounds with high quality two-qubit and three-qubit entanglement sources. The results show that these bounds are valid for various of entangled states we prepared, and thus, we implement robust self-testing processes which improve the previous results significantly.
83 - Ken Wharton 2014
Despite various parallels between quantum states and ordinary information, quantum no-go-theorems have convinced many that there is no realistic framework that might underly quantum theory, no reality that quantum states can represent knowledge *abou t*. This paper develops the case that there is a plausible underlying reality: one actual spacetime-based history, although with behavior that appears strange when analyzed dynamically (one time-slice at a time). By using a simple model with no dynamical laws, it becomes evident that this behavior is actually quite natural when analyzed all-at-once (as in classical action principles). From this perspective, traditional quantum states would represent incomplete information about possible spacetime histories, conditional on the future measurement geometry. Without dynamical laws imposing additional restrictions, those histories can have a classical probability distribution, where exactly one history can be said to represent an underlying reality.
We propose a class of path-entangled photon Fock states for robust quantum optical metrology, imaging, and sensing in the presence of loss. We model propagation loss with beam-splitters and derive a reduced density matrix formalism from which we exam ine how photon loss affects coherence. It is shown that particular entangled number states, which contain a special superposition of photons in both arms of a Mach-Zehnder interferometer, are resilient to environmental decoherence. We demonstrate an order of magnitude greater visibility with loss, than possible with N00N states. We also show that the effectiveness of a detection scheme is related to super-resolution visibility.
For a two-qubit system under local depolarizing channels, the most robust and most fragile states are derived for a given concurrence or negativity. For the one-sided channel, the pure states are proved to be the most robust ones, with the aid of the evolution equation for entanglement given by Konrad et al. [Nat. Phys. 4, 99 (2008)]. Based on a generalization of the evolution equation for entanglement, we classify the ansatz states in our investigation by the amount of robustness, and consequently derive the most fragile states. For the two-sided channel, the pure states are the most robust for a fixed concurrence. Under the uniform channel, the most fragile states have the minimal negativity when the concurrence is given in the region [1/2,1]. For a given negativity, the most robust states are the ones with the maximal concurrence, and the most fragile ones are the pure states with minimum of concurrence. When the entanglement approaches zero, the most fragile states under general nonuniform channels tend to the ones in the uniform channel. Influences on robustness by entanglement, degree of mixture, and asymmetry between the two qubits are discussed through numerical calculations. It turns out that the concurrence and negativity are major factors for the robustness. When they are fixed, the impact of the mixedness becomes obvious. In the nonuniform channels, the most fragile states are closely correlated with the asymmetry, while the most robust ones with the degree of mixture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا