ﻻ يوجد ملخص باللغة العربية
Estimating symmetric properties of a distribution, e.g. support size, coverage, entropy, distance to uniformity, are among the most fundamental problems in algorithmic statistics. While each of these properties have been studied extensively and separate optimal estimators are known for each, in striking recent work, Acharya et al. 2016 showed that there is a single estimator that is competitive for all symmetric properties. This work proved that computing the distribution that approximately maximizes emph{profile likelihood (PML)}, i.e. the probability of observed frequency of frequencies, and returning the value of the property on this distribution is sample competitive with respect to a broad class of estimators of symmetric properties. Further, they showed that even computing an approximation of the PML suffices to achieve such a universal plug-in estimator. Unfortunately, prior to this work there was no known polynomial time algorithm to compute an approximate PML and it was open to obtain a polynomial time universal plug-in estimator through the use of approximate PML. In this paper we provide a algorithm (in number of samples) that, given $n$ samples from a distribution, computes an approximate PML distribution up to a multiplicative error of $exp(n^{2/3} mathrm{poly} log(n))$ in time nearly linear in $n$. Generalizing work of Acharya et al. 2016 on the utility of approximate PML we show that our algorithm provides a nearly linear time universal plug-in estimator for all symmetric functions up to accuracy $epsilon = Omega(n^{-0.166})$. Further, we show how to extend our work to provide efficient polynomial-time algorithms for computing a $d$-dimensional generalization of PML (for constant $d$) that allows for universal plug-in estimation of symmetric relationships between distributions.
In this paper we provide a new efficient algorithm for approximately computing the profile maximum likelihood (PML) distribution, a prominent quantity in symmetric property estimation. We provide an algorithm which matches the previous best known eff
In this paper we provide a general framework for estimating symmetric properties of distributions from i.i.d. samples. For a broad class of symmetric properties we identify the easy region where empirical estimation works and the difficult region whe
In this paper we consider the problem of computing the likelihood of the profile of a discrete distribution, i.e., the probability of observing the multiset of element frequencies, and computing a profile maximum likelihood (PML) distribution, i.e.,
The log-concave maximum likelihood estimator (MLE) problem answers: for a set of points $X_1,...X_n in mathbb R^d$, which log-concave density maximizes their likelihood? We present a characterization of the log-concave MLE that leads to an algorithm
We propose an efficient algorithm for approximate computation of the profile maximum likelihood (PML), a variant of maximum likelihood maximizing the probability of observing a sufficient statistic rather than the empirical sample. The PML has appeal