ﻻ يوجد ملخص باللغة العربية
Using the background field method for the functional renormalization group approach in the case of a generic gauge theory, we study the background field symmetry and gauge dependence of the background average effective action, when the regulator action depends on external fields. The final result is that the symmetry of the average effective action can be maintained for a wide class of regulator functions, but in all cases the dependence of the gauge fixing remains on-shell. The Yang-Mills theory is considered as the main particular example.
The gauge dependence of effective average action in the functional renormalization group is studied. The effective average action is considered as non-perturbative solution to the flow equation which is the basic equation of the method. It is proven
We study the gauge dependence of the effective average action Gamma_k and Newtonian gravitational constant using the RG equation for Gamma_k. Then we truncate the space of action functionals to get a solution of this equation. We solve the truncated
We derive four dimensional $mathcal{N}=1$ supersymmetric effective theory from ten dimensional non-Abelian Dirac-Born-Infeld action compactified on a six dimensional torus with magnetic fluxes on the D-branes. For the ten dimensional action, we use a
For background gauge field configurations reducible to the form Amu = (A3, A(x)) where A3 is a constant, we provide an elementary derivation of the recently obtained result for the exact induced Chern-Simons (CS) effective action in QED3 at finite te
We explicitly demonstrate that the perturbative holomorphic contribution to the off-shell effective action of N=2 U(1) gauge supermultiplet is an entire effect of the minimal coupling to a hypermultiplet with the mass generated by a central charge in