ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-scale periodic velocity oscillation in the filamentary cloud G350.54+0.69

132   0   0.0 ( 0 )
 نشر من قبل Hong-Li Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use APEX mapping observations of 13CO, and C18O (2-1) to investigate the internal gas kinematics of the filamentary cloud G350.54+0.69, composed of the two distinct filaments G350.5-N and G350.5-S. G350.54+0.69 as a whole is supersonic and gravitationally bound. We find a large-scale periodic velocity oscillation along the entire G350.5-N filament with a wavelength of ~1.3 pc and an amplitude of ~0.12 km/s. Comparing with gravitational-instability induced core formation models, we conjecture that this periodic velocity oscillation could be driven by a combination of longitudinal gravitational instability and a large-scale periodic physical oscillation along the filament. The latter may be an example of an MHD transverse wave. This hypothesis can be tested with Zeeman and dust polarization measurements.



قيم البحث

اقرأ أيضاً

109 - Hong-Li Liu 2018
We investigate the global properties of the straight and isolated filamentary cloud G350.54+0.69 using Herschel continuum and APEX molecular line data. The overall straight morphology is similar to two other well studied nearby filaments (Musca and T aurus-B211/3) while the isolated nature of G350.54+0.69 appears similar to Musca. G350.54+0.69 is composed of two distinct filaments with a length ~5.9 pc for G350.5-N (~2.3 pc for G350.5-S), a total mass of ~810 $M_{odot}$ (~ 110 $M_{odot}$), and a mean temperature of ~ 18.2 K (~17.7 K). We identify 9 dense and gravitationally bound cores in the whole cloud G350.54+0.69. The separations between cores and the line mass of the whole cloud appear to follow the predictions of the sausage instability theory, which suggests that G350.54+0.69 could have undergone radial collapse and fragmentation. The presence of young protostars is consistent with this hypothesis. The line masses of the two filaments (~120 $M_{odot}$ pc$^{-1}$ for G350.5-N, and ~45 $M_{odot}$ pc$^{-1}$ for G350.5-S), mass-size distributions of the dense cores, and low-mass protostars collectively suggest that G350.54+0.69 is a site of ongoing low-mass star formation. Based on the above evidence, we place G350.54+0.69 in an intermediate evolutionary state between Musca and Taurus-B211/3. We suggest that investigations into straight (and isolated) versus those distributed inside molecular clouds may provide important clues into filament formation and evolution.
Infrared Dark Clouds (IRDCs) are cold, high mass surface density and high density structures, likely to be representative of the initial conditions for massive star and star cluster formation. CO emission from IRDCs has the potential to be useful for tracing their dynamics, but may be affected by depleted gas phase abundances due to freeze-out onto dust grains. Here we analyze C18O J=1-0 and J=2-1 emission line data, taken with the IRAM 30m telescope, of the highly filamentary IRDC G035.39.-0033. We derive the excitation temperature as a function of position and velocity, with typical values of ~7K, and thus derive total mass surface densities, Sigma_C18O, assuming standard gas phase abundances and accounting for optical depth in the line, which can reach values of ~1. The mass surface densities reach values of ~0.07 g/cm^2. We compare these results to the mass surface densities derived from mid-infrared (MIR) extinction mapping, Sigma_SMF, by Butler & Tan, which are expected to be insensitive to the dust temperatures in the cloud. With a significance of >10sigma, we find Sigma_C18O/Sigma_SMF decreases by about a factor of 5 as Sigma increases from ~0.02 to ~0.2 g/cm^2, which we interpret as evidence for CO depletion. Several hundred solar masses are being affected, making this one of the most massive clouds in which CO depletion has been observed directly. We present a map of the depletion factor in the filament and discuss implications for the formation of the IRDC.
We perform ideal MHD high resolution AMR simulations with driven turbulence and self-gravity and find that long filamentary molecular clouds are formed at the converging locations of large-scale turbulence flows and the filaments are bounded by gravi ty. The magnetic field helps shape and reinforce the long filamentary structures. The main filamentary cloud has a length of ~4.4 pc. Instead of a monolithic cylindrical structure, the main cloud is shown to be a collection of fiber/web-like sub-structures similar to filamentary clouds such as L1495. Unless the line-of-sight is close to the mean field direction, the large-scale magnetic field and striations in the simulation are found roughly perpendicular to the long axis of the main cloud, similar to 1495. This provides strong support for a large-scale moderately strong magnetic field surrounding L1495. We find that the projection effect from observations can lead to incorrect interpretations of the true three-dimensional physical shape, size, and velocity structure of the clouds. Helical magnetic field structures found around filamentary clouds that are interpreted from Zeeman observations can be explained by a simple bending of the magnetic field that pierces through the cloud. We demonstrate that two dark clouds form a T-shape configuration which are strikingly similar to the Infrared dark cloud SDC13 leading to the interpretation that SDC13 results from a collision of two long filamentary clouds. We show that a moderately strong magnetic field (M_A ~ 1) is crucial for maintaining a long and slender filamentary cloud for a long period of time ~0.5 million years.
139 - N. F. H. Tothill 2009
Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex - Lupus I, III, and IV - trace the column density and temperature of the molecular gas. Comparison with IR extinction map s from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km/s. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding HI shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an HI shell.
173 - Patricio Sanhueza 2010
We present molecular line observations, made with angular resolutions of ~20, toward the filamentary infrared dark cloud G34.43+0.24 using the APEX [CO(3-2), 13CO(3-2), C18O(3-2) and CS(7-6) transitions], Nobeyama 45 m [CS(2-1), SiO(2-1), C34S(2-1), HCO+(1-0), H13CO+(1-0) and CH3OH(2-1) transitions], and SEST [CS(2-1) and C18O(2-1) transitions] telescopes. We find that the spatial distribution of the molecular emission is similar to that of the dust continuum emission observed with 11 resolution showing a filamentary structure and four cores. The cores have local thermodynamic equilibrium masses ranging from 3.3x10^2 - 1.5x10^3 solar masses and virial masses from 1.1x10^3 - 1.5x10^3 solar masses, molecular hydrogen densities between 1.8x10^4 and 3.9x10^5 cm^{-3}, and column densities >2.0x10^{22} cm^{-2}; values characteristics of massive star forming cores. The 13CO(3-2) profile observed toward the most massive core reveals a blue profile indicating that the core is undergoing large-scale inward motion with an average infall velocity of 1.3 km/s and a mass infall rate of 1.8x10^{-3} solar masses per year. We report the discovery of a molecular outflow toward the northernmost core thought to be in a very early stage of evolution. We also detect the presence of high velocity gas toward each of the other three cores, giving support to the hypothesis that the excess 4.5 $mu$ emission (green fuzzies) detected toward these cores is due to shocked gas. The molecular outflows are massive and energetic, with masses ranging from 25 -- 80 solar masses, momentum 2.3 - 6.9x10^2 Msun km/s, and kinetic energies 1.1 - 3.6x10^3 Msun km^2 s^{-2}; indicating that they are driven by luminous, high-mass young stellar objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا