Diagnosing the performance of human mobility models at small spatial scales using volunteered geographic information


الملخص بالإنكليزية

Accurate modelling of local population movement patterns is a core contemporary concern for urban policymakers, affecting both the short term deployment of public transport resources and the longer term planning of transport infrastructure. Yet, while macro-level population movement models (such as the gravity and radiation models) are well developed, micro-level alternatives are in much shorter supply, with most macro-models known to perform badly in smaller geographic confines. In this paper we take a first step to remedying this deficit, by leveraging two novel datasets to analyse where and why macro-level models of human mobility break down at small scales. In particular, we use an anonymised aggregate dataset from a major mobility app and combine this with freely available data from OpenStreetMap concerning land-use composition of different areas around the county of Oxfordshire in the United Kingdom. We show where different models fail, and make the case for a new modelling strategy which moves beyond rough heuristics such as distance and population size towards a detailed, granular understanding of the opportunities presented in different areas of the city.

تحميل البحث