ﻻ يوجد ملخص باللغة العربية
Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.
A strong trend for quantum based technologies and applications follows the avenue of combining different platforms to exploit their complementary technological and functional advantages. Micro and nano-mechanical devices are particularly suitable for
We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the
We demonstrate experimental results based on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the internal quantum efficiency (IQE) of InGaAs quantum dots (QDs). Using a strain-reducing layer (SRL) these QDs
In this study, we report a conceptually novel broadband high-frequency electron spin resonance (HFESR) spectroscopic technique. In contrast to the ordinary force-detected ESR technique, which detects the magnetization change due to the saturation eff
We generalize a proposal for detecting single phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadrati