ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Diffusion and Quantum Chaos in Neutral Magnetized Plasma

73   0   0.0 ( 0 )
 نشر من قبل Shu Lin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the thermal diffusion constant $D_T$ and butterfly velocity $v_B$ in neutral magnetized plasma using holographic magnetic brane background. We find the thermal diffusion constant satisfies Blakes bound. The constant in the bound $D_T2pi T/v_B^2$ is a decreasing function of magnetic field. It approaches one half in the large magnetic field limit. We also find the existence of a special point defined by Lyapunov exponent and butterfly velocity on which pole-skipping phenomenon occurs.



قيم البحث

اقرأ أيضاً

We define a particular combination of charge and heat currents that is decoupled with the heat current. This `heat-decoupled (HD) current can be transported by diffusion at long distances, when some thermo-electric conductivities and susceptibilities satisfy a simple condition. Using the diffusion condition together with the Kelvin formula, we show that the HD diffusivity can be same as the charge diffusivity and also the heat diffusivity. We illustrate that such mechanism is implemented in a strongly coupled field theory, which is dual to a Lifshitz gravity with the dynamical critical index z=2. In particular, it is exhibited that both charge and heat diffusivities build the relationship to the quantum chaos. Moreover, we study the HD diffusivity without imposing the diffusion condition. In some homogeneous holographic lattices, it is found that the diffusivity/chaos relation holds independently of any parameters, including the strength of momentum relaxation, chemical potential, or temperature. We also show a counter example of the relation and discuss its limited universality.
93 - Dmitry S. Ageev 2019
This is the contribution to Quarks2018 conference proceedings. This contribution is devoted to the holographic description of chaos and quantum complexity in the strongly interacting systems out of equilibrium. In the first part of the talk we presen t different holographic complexity proposals in out-of-equilibrium CFT following the local perturbation. The second part is devoted to the chaotic growth of the local operator size at a finite chemical potential. There are numerous results stating that the chemical potential may lead to the chaos disappearance, and we confirm these results from holographic viewpoint.
Using the anomaly inflow mechanism, we compute the flavor/Lorentz non-invariant contribution to the partition function in a background with a U(1) isometry. This contribution is a local functional of the background fields. By identifying the U(1) iso metry with Euclidean time we obtain a contribution of the anomaly to the thermodynamic partition function from which hydrostatic correlators can be efficiently computed. Our result is in line with, and an extension of, previous studies on the role of anomalies in a hydrodynamic setting. Along the way we find simplified expressions for Bardeen-Zumino polynomials and various transgression formulae
We present the full charge and energy diffusion constants for the Einstein-Maxwell dilaton (EMD) action for Lifshitz spacetime characterized by a dynamical critical exponent $z$. Therein we compute the fully renormalized static thermodynamic potentia l explicitly, which confirms the forms of all thermodynamic quantities including the Bekenstein-Hawking entropy and Smarr-like relationship. Our exact computation demonstrates a modification to the Lifshitz Ward identity for the EMD theory. For transport, we target our analysis at finite chemical potential and include axion fields to generate momentum dissipation. While our exact results corroborate anticipated bounds, we are able to demonstrate that the diffusivities are governed by the engineering dimension of the diffusion coefficient, $[D]=2-z$. Consequently, a $beta$-function defined as the derivative of the trace of the diffusion matrix with respect to the effective lattice spacing changes sign precisely at $z=2$. At $z=2$, the diffusion equation exhibits perfect scale invariance and the corresponding diffusion constant is the pure number $1/d_s$ for both the charge and energy sectors, where $d_s$ is the number of spatial dimensions. Further, we find that as $ztoinfty$, the charge diffusion constant vanishes, indicating charge localization. Deviation from universal decoupled transport obtains when either the chemical potential or momentum dissipation are large relative to temperature, an echo of strong thermoelectric interactions.
100 - R. Loganayagam 2012
We study the thermal expectation value of the following observeable at finite temperature T and chemical potential mu : < L_{12} L_{34} ... L_{d-3,d-2} P_{d-1} > where L_{ij} denote the angular momenta, and P_i denotes the spatial momentum in d space time dimensions with d even. We call this observeable the thermal helicity. Using a variety of arguments, we motivate the surprising assertion that thermal helicity per unit volume is a polynomial in T and mu. Further, in field theories without chiral gravitino, we conjecture that this polynomial can be derived from the anomaly polynomial of the theory. We show that this conjecture is related to the recent conjecture on gravitational anomaly induced transport made in arXiv:1201.2812 . We support these statements by various sphere partition function computations in free theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا