A dynamical metric and its ground state from the breaking down of the topological invariance of the Euler characteristic


الملخص بالإنكليزية

Quantum state wave functionals are constructed in exact form for the graviton-like field theory obtained by breaking down the topological symmetry of the string action related with the Euler characteristic of the world-surface; their continuous and discrete symmetries are discussed. The comparison with the so-called Chern-Simons state, which may be inappropriate as quantum state, allows us to conclude that the found wave functionals will give a plausible approximation to the ground state for the considered field theory.

تحميل البحث